ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-perturbative renormalization-group approach to lattice models

276   0   0.0 ( 0 )
 نشر من قبل Nicolas Dupuis
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The non-perturbative renormalization-group approach is extended to lattice models, considering as an example a $phi^4$ theory defined on a $d$-dimensional hypercubic lattice. Within a simple approximation for the effective action, we solve the flow equations and obtain the renormalized dispersion $eps(q)$ over the whole Brillouin zone of the reciprocal lattice. In the long-distance limit, where the lattice does not matter any more, we reproduce the usual flow equations of the continuum model. We show how the numerical solution of the flow equations can be simplified by expanding the dispersion in a finite number of circular harmonics.



قيم البحث

اقرأ أيضاً

243 - T. Machado , N. Dupuis 2010
We propose a modification of the non-perturbative renormalization-group (NPRG) which applies to lattice models. Contrary to the usual NPRG approach where the initial condition of the RG flow is the mean-field solution, the lattice NPRG uses the (loca l) limit of decoupled sites as the (initial) reference system. In the long-distance limit, it is equivalent to the usual NPRG formulation and therefore yields identical results for the critical properties. We discuss both a lattice field theory defined on a $d$-dimensional hypercubic lattice and classical spin systems. The simplest approximation, the local potential approximation, is sufficient to obtain the critical temperature and the magnetization of the 3D Ising, XY and Heisenberg models to an accuracy of the order of one percent. We show how the local potential approximation can be improved to include a non-zero anomalous dimension $eta$ and discuss the Berezinskii-Kosterlitz-Thouless transition of the 2D XY model on a square lattice.
271 - N. Dupuis , K. Sengupta 2007
We use a non-perturbative renormalization-group technique to study interacting bosons at zero temperature. Our approach reveals the instability of the Bogoliubov fixed point when $dleq 3$ and yields the exact infrared behavior in all dimensions $d>1$ within a rather simple theoretical framework. It also enables to compute the low-energy properties in terms of the parameters of a microscopic model. In one-dimension and for not too strong interactions, it yields a good picture of the Luttinger-liquid behavior of the superfluid phase.
We present in detail the implementation of the Blaizot-Mendez-Wschebor (BMW) approximation scheme of the nonperturbative renormalization group, which allows for the computation of the full momentum dependence of correlation functions. We discuss its signification and its relation with other schemes, in particular the derivative expansion. Quantitative results are presented for the testground of scalar O(N) theories. Besides critical exponents which are zero-momentum quantities, we compute in three dimensions in the whole momentum range the two-point function at criticality and, in the high temperature phase, the universal structure factor. In all cases, we find very good agreement with the best existing results.
127 - A. Rancon 2014
We present a Lattice Non-Perturbative Renormalization Group (NPRG) approach to quantum XY spin models by using a mapping onto hardcore bosons. The NPRG takes as initial condition of the renormalization group flow the (local) limit of decoupled sites, allowing us to take into account the hardcore constraint exactly. The initial condition of the flow is equivalent to the large $S$ classical results of the corresponding spin system. Furthermore, the hardcore constraint is conserved along the RG flow, and we can describe both local and long-distance fluctuations in a non-trivial way. We discuss a simple approximation scheme, and solve the corresponding flow equations. We compute both the zero-temperature thermodynamics and the finite temperature phase diagram on the square and cubic lattices. The NPRG allows us to recover the correct critical physics at finite temperature in two and three dimensions. The results compare well with numerical simulations.
A functional renormalization group approach to $d$-dimensional, $N$-component, non-collinear magnets is performed using various truncations of the effective action relevant to study their long distance behavior. With help of these truncations we stud y the existence of a stable fixed point for dimensions between $d= 2.8$ and $d=4$ for various values of $N$ focusing on the critical value $N_c(d)$ that, for a given dimension $d$, separates a first order region for $N<N_c(d)$ from a second order region for $N>N_c(d)$. Our approach concludes to the absence of stable fixed point in the physical - $N=2,3$ and $d=3$ - cases, in agreement with $epsilon=4-d$-expansion and in contradiction with previous perturbative approaches performed at fixed dimension and with recent approaches based on conformal bootstrap program.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا