ﻻ يوجد ملخص باللغة العربية
Using Monte Carlo simulations, we investigate the structural characteristics of an interacting hard sphere system with shifted charge to elucidate the effect of the non-centrosymmetric interaction on its phase behavior. Two different phase transitions are identified for this model system. Upon increasing the volume fraction, an abrupt liquid-to-crystal transition first occurs at a significantly lower volume fraction in comparison to that of the centro-charged system. This is due to the stronger effective inter-particle repulsion caused by the additional charge anisotropy. Moreover, within the crystal state at higher volume fraction, the system further undergoes a continuous disorder-to-order transition with respect to the charge orientation. Detailed analyses in this work disclose the nature of these transitions, and orientation fluctuation may cause non-centrosymmetric unit cells. The dependence of crystal formation and orientational ordering on temperature was also examined. These findings indicate that the non-centrosymmetric interaction in this work results in additional freedoms to fine-tune the phase diagram and increase the functionalities of materials. Moreover, these model studies are essential to advance our future understanding regarding the fundamental physiochemical properties of novel Janus colloidal particles and protein crystallization conditions.
The principles behind the computation of protein-ligand binding free energies by Monte Carlo integration are described in detail. The simulation provides gas-phase binding free energies that can be converted to aqueous energies by solvation correctio
We describe a Monte Carlo procedure which allows sampling of the disjoint configuration spaces associated with crystalline and fluid phases, within a single simulation. The method utilises biased sampling techniques to enhance the probabilities of ga
We propose the use of preconditioning in FCIQMC which, in combination with perturbative estimators, greatly increases the efficiency of the algorithm. The use of preconditioning allows a time step close to unity to be used (without time-step errors),
Monte Carlo simulations are widely used in many areas including particle accelerators. In this lecture, after a short introduction and reviewing of some statistical backgrounds, we will discuss methods such as direct inversion, rejection method, and
Stabilization and dispersion of electrical charge by colloids in non-polar media, such as nano-particles or inverse micelles, is significant for a variety of chemical and technological applications, ranging from drug delivery to e-ink. Many applicati