ترغب بنشر مسار تعليمي؟ اضغط هنا

Monte Carlo Simulation Techniques

91   0   0.0 ( 0 )
 نشر من قبل J. Qiang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ji Qiang




اسأل ChatGPT حول البحث

Monte Carlo simulations are widely used in many areas including particle accelerators. In this lecture, after a short introduction and reviewing of some statistical backgrounds, we will discuss methods such as direct inversion, rejection method, and Markov chain Monte Carlo to sample a probability distribution function, and methods for variance reduction to evaluate numerical integrals using the Monte Carlo simulation. We will also briefly introduce the quasi-Monte Carlo sampling at the end of this lecture.



قيم البحث

اقرأ أيضاً

In this work we demonstrate the usage of the VegasFlow library on multidevice situations: multi-GPU in one single node and multi-node in a cluster. VegasFlow is a new software for fast evaluation of highly parallelizable integrals based on Monte Carl o integration. It is inspired by the Vegas algorithm, very often used as the driver of cross section integrations and based on Googles powerful TensorFlow library. In this proceedings we consider a typical multi-GPU configuration to benchmark how different batch sizes can increase (or decrease) the performance on a Leading Order example integration.
Several models for the Monte Carlo simulation of Compton scattering on electrons are quantitatively evaluated with respect to a large collection of experimental data retrieved from the literature. Some of these models are currently implemented in gen eral purpose Monte Carlo systems; some have been implemented and evaluated for possible use in Monte Carlo particle transport for the first time in this study. Here we present first and preliminary results concerning total and differential Compton scattering cross sections.
Comptonization is the process in which photon spectrum changes due to multiple Compton scatterings in the electronic plasma. It plays an important role in the spectral formation of astrophysical X-ray and gamma-ray sources. There are several intrinsi c limitations for the analytical method in dealing with the Comptonization problem and Monte Carlo simulation is one of the few alternatives. We describe an efficient Monte Carlo method that can solve the Comptonization problem in a fully relativistic way. We expanded the method so that it is capable of simulating Comptonization in the media where electron density and temperature varies discontinuously from one region to the other and in the isothermal media where density varies continuously along photon paths. The algorithms are presented in detail to facilitate computer code implementation. We also present a few examples of its application to the astrophysical research.
119 - Maria Grazia Pia 2010
An investigation is in progress to evaluate extensively and quantitatively the possible benefits and drawbacks of new programming paradigms in a Monte Carlo simulation environment, namely in the domain of physics modeling. The prototype design and ex tensive benchmarks, including a variety of rigorous quantitative metrics, are presented. The results of this research project allow the evaluation of new software techniques for their possible adoption in Monte Carlo simulation on objective, quantitative ground.
The bifurcation method is a way to do rare event sampling -- to estimate the probability of events that are too rare to be found by direct simulation. We describe the bifurcation method and use it to estimate the transition rate of a double well pote ntial problem. We show that the associated constrained path sampling problem can be addressed by a combination of Crooks-Chandler sampling and parallel tempering and marginalization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا