ﻻ يوجد ملخص باللغة العربية
We report an angle-resolved photoemission investigation of optimally-doped Ca$_{0.33}$Na$_{0.67}$Fe$_2$As$_2$. The Fermi surface topology of this compound is similar to that of the well-studied Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ material, except for larger hole pockets resulting from a higher hole concentration per Fe atoms. We find that the quasi-nesting conditions are weakened in this compound as compared to Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$. As with Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ though, we observe nearly isotropic superconducting gaps with Fermi surface-dependent magnitudes. A small variation in the gap size along the momentum direction perpendicular to the surface is found for one of the Fermi surfaces. Our superconducting gap results on all Fermi surface sheets fit simultaneously very well to a global gap function derived from a strong coupling approach, which contains only 2 global parameters.
We measured the in-plane resistivity anisotropy in the underdoped Ca$_{1-x}$Na$_x$Fe$_2$As$_2$ single crystals. The anisotropy (indicated by $rho_{rm b} - rho_{rm a}$) appears below a temperature well above magnetic transition temperature $T_{rm N}$,
The discovery of high-temperature superconductivity in iron pnictides raised the possibility of an unconventional superconducting mechanism in multiband materials. The observation of Fermi-surface(FS)-dependent nodeless superconducting gaps suggested
We use polarized inelastic neutron scattering to study the temperature and energy dependence of spin space anisotropies in the optimally hole-doped iron pnictide Ba$_{0.67}$K$_{0.33}$Fe$_{2}$As$_{2}$ ($T_{{rm c}}=38$ K). In the superconducting state,
We report synthesis, crystal structure and physical properties of a quinary iron-arsenide fluoride KCa$_2$Fe$_4$As$_4$F$_2$. The new compound crystallizes in a body-centered tetragonal lattice (with space group $I4/mmm$, $a$ = 3.8684(2) {AA}, c = 31.
The three-dimensional Fermi surface morphology of superconducting BaFe_2(As_0.37}P_0.63)_2 with T_c=9K, is determined using the de Haas-van Alphen effect (dHvA). The inner electron pocket has a similar area and k_z interplane warping to the observed