ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin anisotropy due to spin-orbit coupling in optimally hole-doped Ba$_{0.67}$K$_{0.33}$Fe$_{2}$As$_{2}$

90   0   0.0 ( 0 )
 نشر من قبل Yu Song
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use polarized inelastic neutron scattering to study the temperature and energy dependence of spin space anisotropies in the optimally hole-doped iron pnictide Ba$_{0.67}$K$_{0.33}$Fe$_{2}$As$_{2}$ ($T_{{rm c}}=38$ K). In the superconducting state, while the high-energy part of the magnetic spectrum is nearly isotropic, the low-energy part displays a pronouced anisotropy, manifested by a $c$-axis polarized resonance. We also observe that the spin anisotropy in superconducting Ba$_{0.67}$K$_{0.33}$Fe$_{2}$As$_{2}$ extends to higher energies compared to electron-doped BaFe$_{2-x}TM_{x}$As$_{2}$ ($TM=$Co, Ni) and isovalent-doped BaFe$_{2}$As$_{1.4}$P$_{0.6}$, suggesting a connection between $T_{rm c}$ and the energy scale of the spin anisotropy. In the normal state, the low-energy spin anisotropy for optimally hole- and electron-doped iron pnictides onset at temperatures similar to the temperatures at which the elastoresistance deviate from Curie-Weiss behavior, pointing to a possible connection between the two phenomena. Our results highlight the relevance of the spin-orbit coupling to the superconductivity of the iron pnictides.



قيم البحث

اقرأ أيضاً

The spatially averaged density of states, <N(0)>, of an unconventional d-wave superconductor is magnetic field dependent, proportional to $H^{1/2}$, owing to the Doppler shift of quasiparticle excitations in a background of vortex supercurrents[1,2]. This phenomenon, called the Volovik effect, has been predicted to exist for a sign changing $spm$ state [3], although it is absent in a single band s-wave superconductor. Consequently, we expect there to be Doppler contributions to the NMR spin-lattice relaxation rate, $1/T_1 propto <N(0)^2>$, for an $spm$ state which will depend on magnetic field. We have measured the $^{75}$As $1/T_1$ in a high-quality, single crystal of Ba$_{0.67}$K$_{0.33}$Fe$_{2}$As$_{2}$ over a wide range of field up to 28 T. Our spatially resolved measurements show that indeed there are Doppler contributions to $1/T_1$ which increase closer to the vortex core, with a spatial average proportional to $H^2$, inconsistent with recent theory [4]
The recent discovery and subsequent developments of FeAs-based superconductors have presented novel challenges and opportunities in the quest for superconducting mechanisms in correlated-electron systems. Central issues of ongoing studies include int erplay between superconductivity and magnetism as well as the nature of the pairing symmetry reflected in the superconducting energy gap. In the cuprate and RE(O,F)FeAs (RE = rare earth) systems, the superconducting phase appears without being accompanied by static magnetic order, except for narrow phase-separated regions at the border of phase boundaries. By muon spin relaxation measurements on single crystal specimens, here we show that superconductivity in the AFe$_{2}$As$_{2}$ (A = Ca,Ba,Sr) systems, in both the cases of composition and pressure tunings, coexists with a strong static magnetic order in a partial volume fraction. The superfluid response from the remaining paramagnetic volume fraction of (Ba$_{0.5}$K$_{0.5}$)Fe$_{2}$As$_{2}$ exhibits a nearly linear variation in T at low temperatures, suggesting an anisotropic energy gap with line nodes and/or multi-gap effects.
We report an angle-resolved photoemission investigation of optimally-doped Ca$_{0.33}$Na$_{0.67}$Fe$_2$As$_2$. The Fermi surface topology of this compound is similar to that of the well-studied Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ material, except for lar ger hole pockets resulting from a higher hole concentration per Fe atoms. We find that the quasi-nesting conditions are weakened in this compound as compared to Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$. As with Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ though, we observe nearly isotropic superconducting gaps with Fermi surface-dependent magnitudes. A small variation in the gap size along the momentum direction perpendicular to the surface is found for one of the Fermi surfaces. Our superconducting gap results on all Fermi surface sheets fit simultaneously very well to a global gap function derived from a strong coupling approach, which contains only 2 global parameters.
170 - Y.-M. Xu , Y.-B. Huang , X.-Y. Cui 2010
The iron-pnictide superconductors have a layered structureformed by stacks of FeAs planes from which the superconductivity originates. Given the multiband and quasi three-dimensional cite{3D_SC} (3D) electronic structure of these high-temperature sup erconductors, knowledge of the quasi-3D superconducting (SC) gap is essential for understanding the superconducting mechanism. By using the KZ-capability of angle-resolved photoemission, we completely determined the SC gap on all five Fermi surfaces (FSs) in three dimensions on BKFAOP samples. We found a marked KZ dispersion of the SC gap, which can derive only from interlayer pairing. Remarkably, the SC energy gaps can be described by a single 3D gap function with two energy scales characterizing the strengths of intralayer $Delta_1$ and interlayer $Delta_2$ pairing. The anisotropy ratio $Delta_2/Delta_1$, determined from the gap function, is close to the c-axis anisotropy ratio of the magnetic exchange coupling $J_c/J_{ab}$ in the parent compound cite{NeutronParent}. The ubiquitous gap function for all the 3D FSs reveals that pairing is short-ranged and strongly constrain the possible pairing force in the pnictides. A suitable candidate could arise from short-range antiferromagnetic fluctuations.
Here we present a combined study of the slightly underdoped novel pnictide superconductor Ba(1-x)K(x)Fe(2)As(2) by means of X-ray powder diffraction, neutron scattering, muon spin rotation (muSR), and magnetic force microscopy (MFM). Commensurate sta tic magnetic order sets in below Tm ~ 70 K as inferred from the emergence of the magnetic (1 0 -3) reflection in the neutron scattering data and from the observation of damped oscillations in the zero-field-muSR asymmetry. Transverse-field muSR below Tc shows a coexistence of magnetically ordered and non-magnetic states, which is also confirmed by MFM imaging. We explain such coexistence by electronic phase separation into antiferromagnetic and superconducting/normal state regions on a lateral scale of several tens of nanometers. Our findings indicate that such mesoscopic phase separation can be considered an intrinsic property of some iron pnictide superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا