ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of Anisotropic In-plane Resistivity with doping level in Ca$_{1-x}$Na$_x$Fe$_2$As$_2$ Single Crystals

355   0   0.0 ( 0 )
 نشر من قبل X. H. Chen
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We measured the in-plane resistivity anisotropy in the underdoped Ca$_{1-x}$Na$_x$Fe$_2$As$_2$ single crystals. The anisotropy (indicated by $rho_{rm b} - rho_{rm a}$) appears below a temperature well above magnetic transition temperature $T_{rm N}$, being positive ($rho_{rm b} - rho_{rm a} > 0$) as $xleq$ 0.14. With increasing the doping level to $x$ = 0.19, an intersection between $rho_{rm b}$ and $rho_{rm a}$ is observed upon cooling, with $rho_{rm b} - rho_{rm a} < 0$ at low-temperature deep inside a magnetically ordered state, while $rho_{rm b} - rho_{rm a}> 0$ at high temperature. Subsequently, further increase of hole concentration leads to a negative anisotropy $rho_{rm b} - rho_{rm a} < 0$ in the whole temperature range. These results manifest that the anisotropic behavior of resistivity in the magnetically ordered state depends strongly on the competition of the contributions from different mechanisms, and the competition between the two contributions results in a complicated evolution of the anisotropy of in-plane resistivity with doping level.



قيم البحث

اقرأ أيضاً

Temperature-dependent resistivity is studied in single crystals of iron-arsenide superconductor Na$_{1-delta}$Fe$_{1-x}$Co$_x$As for electrical current directions along, $rho_a (T)$, and transverse, $rho_c (T)$, to the Fe-As layers. Doping with Co in creases stability of this compound to reaction with the environment and suppresses numerous features in both $rho_a(T)$ and $rho_c(T)$ compared to the stoichiometric NaFeAs. Evolution of $rho_a (T)$ with $x$ follows a universal trend observed in other pnictide superconductors, exhibiting a $T$-linear temperature dependence close to the optimal doping and development of $T^2$ dependence upon further doping. $rho_c (T)$ in parent compound shows a non - monotonic behavior with a crossover from non-metallic resistivity increase on cooling from room temperature down to $sim$ 80 K to a metallic decrease below this temperature. Both $rho_a (T)$ and $rho_c (T)$ show several correlated crossover - like features at $T>$ 80 K. Despite a general trend towards more metallic behavior of inter - plane resistivity in Co-doped samples, the temperature of the crossover from insulating to metallic behavior (80 K) does not change much with doping.
Measurements of the current-voltage characteristics were performed on Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ single crystals with doping level $0.044 leq x leq 0.1$. An unconventional increase in the flux-flow resistivity $rho_{rm ff}$ with decreasing magnet ic field was observed across this doping range. Such an abnormal field dependence of flux-flow resistivity is in contrast with the linear field dependence of $rho_{rm ff}$ in conventional type-II superconductors, but is similar to the behavior recently observed in the heavy-fermion superconductor CeCoIn$_5$. A significantly enhanced $rho_{rm ff}$ was found for the x=0.06 single crystals, implying a strong single-particle energy dissipation around the vortex cores. At different temperatures and fields and for a given doping concentration, the normalized $rho_{rm ff}$ scales with normalized field and temperature. The doping level dependence of these parameters strongly suggests that the abnormal upturn flux-flow resisitivity is likely related to the enhancement of spin fluctuations around the vortex cores of the optimally doped samples.
149 - N. Ni , M. E. Tillman , J.-Q. Yan 2008
Single crystalline samples of Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ with $x < 0.12$ have been grown and characterized via microscopic, thermodynamic and transport measurements. With increasing Co substitution, the thermodynamic and transport signatures of t he structural (high temperature tetragonal to low temperature orthorhombic) and magnetic (high temperature non magnetic to low temperature antiferromagnetic) transitions are suppressed at a rate of roughly 15 K per percent Co. In addition, for $x ge 0.038$ superconductivity is stabilized, rising to a maximum $T_c$ of approximately 23 K for $x approx 0.07$ and decreasing for higher $x$ values. The $T - x$ phase diagram for Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ indicates that either superconductivity can exist in both low temperature crystallographic phases or that there is a structural phase separation. Anisotropic, superconducting, upper critical field data ($H_{c2}(T)$) show a significant and clear change in anisotropy between samples that have higher temperature structural phase transitions and those that do not. These data show that the superconductivity is sensitive to the suppression of the higher temperature phase transition.
We report the magnetic field -- temperature ($H-T$) phase diagram of Ca$_{10}$(Pt$_4$As$_8$)[(Fe$_{1-x}$Pt$_x$)$_2$As$_2$]$_5$ ($xapprox 0.05$) single crystals, which consists of normal, vortex liquid, plastic creep and elastic creep phases. The uppe r critical field anisotropy is determined by a radio frequency technique via the measurements of magnetic penetration depth, $lambda$. Both, irreversibility line, $H_{irr}(T)$, and flux creep line, $H^{SPM}(T)$, are obtained by measuring the magnetization. We find that $H_{irr}(T)$ is well described by the Lindemann criterion with parameters similar to those for cuprates, while small $H^{SPM}(T)$ results in a wide plastic creep regime. The flux creep rates in the elastic creep regime are in qualitative agreement with the collective creep theory for random point defects. A gradual crossover from a single vortex to a bundles regime is observed. Moreover, we obtain $lambda(4~ text K) = 260(26)$ nm through the direct measurement of the London penetration depth by magnetic force microscopy.
148 - J.-Q. Yan , S. Nandi , B. Saparov 2014
La$_{0.4}$Na$_{0.6}$Fe$_2$As$_2$ single crystals have been grown out of an NaAs flux in an alumina crucible and characterized by measuring magnetic susceptibility, electrical resistivity, specific heat, as well as single crystal x-ray and neutron dif fraction. La$_{0.4}$Na$_{0.6}$Fe$_2$As$_2$ single crystals show a structural phase transition from a high temperature tetragonal phase to a low-temperature orthorhombic phase at T$_s$,=,125,K. This structural transition is accompanied by an anomaly in the temperature dependence of electrical resistivity, anisotropic magnetic susceptibility, and specific heat. Concomitant with the structural phase transition, the Fe moments order along the emph{a} direction with an ordered moment of 0.7(1),$mu_{textup{B}}$ at emph{T},=,5 K. The low temperature stripe antiferromagnetic structure is the same as that in other emph{A}Fe$_{2}$As$_{2}$ (emph{A},=,Ca, Sr, Ba) compounds. La$_{0.5-x}$Na$_{0.5+x}$Fe$_2$As$_2$ provides a new material platform for the study of iron-based superconductors where the electron-hole asymmetry could be studied by simply varying La/Na ratio.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا