ترغب بنشر مسار تعليمي؟ اضغط هنا

Flexibility of the quasi-non-uniform exchange-correlation approximation

124   0   0.0 ( 0 )
 نشر من قبل Henrik Lev\\\"am\\\"aki M.Sc.
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In our previous study [Phys. Rev. B 86, 201104 (2012)] we introduced the so called quasi-non-uniform gradient-level exchange-correlation approximation (QNA) and demonstrated its strength in producing highly accurate equilibrium volumes for metals and their alloys within the density-functional theory. In this paper we extend the scheme to include the accuracy of bulk modulus as an additional figure of merit and show that this scheme is flexible enough as to allow the computation of accurate equilibrium volumes and bulk moduli at the same time. The power and feasibility of this scheme is demonstrated on NiAl and FeV binary alloys.



قيم البحث

اقرأ أيضاً

We propose a simple dynamic exchange-correlation kernel of the uniform electron gas. We model the reduction of the electron-electron interaction due to short-range exchange-correlation effects by introducing a frequency-dependent error-function effec tive interaction. By imposing the fulfillment of the compresibility and the third-frequency-moment sum rules, as well as the correct asymptotic behavior at large wave vectors, we find an accurate and simple dynamic exchange-correlation kernel that accurately reproduces the wave-vector analysis and the imaginary-frequency analysis of the correlation energy of the uniform electron gas.
We propose a generalized gradient approximation (GGA) for the angle- and system-averaged exchange-correlation hole of a many-electron system. This hole, which satisfies known exact constraints, recovers the PBEsol (Perdew-Burke-Ernzerhof for solids) exchange-correlation energy functional, a GGA that accurately describes the equilibrium properties of densely packed solids and their surfaces. We find that our PBEsol exchange-correlation hole describes the wavevector analysis of the jellium exchange-correlation surface energy in agreement with a sophisticated time-dependent density-functional calculation (whose three-dimensional wavevector analysis we report here).
229 - L. Vitos 2000
The Airy gas model of the edge electron gas is used to construct an exchange-energy functional which is an alternative to those obtained in the local density and generalized gradient approximations. Test calculations for rare gas atoms, molecules, so lids and surfaces show that the Airy gas functional performs better than the local density approximation in all cases and better than the generalized gradient approximation for solids and surfaces.
We present a detailed study of the coupling-constant-averaged exchange-correlation hole density at a jellium surface, which we obtain in the random-phase approximation (RPA) of many-body theory. We report contour plots of the exchange-only and exchan ge-correlation hole densities, the integration of the exchange-correlation hole density over the surface plane, the on-top correlation hole, and the energy density. We find that the on-top correlation hole is accurately described by local and semilocal density-functional approximations. We also find that for electrons that are localized far outside the surface the main part of the corresponding exchange-correlation hole is localized at the image plane.
Variation of the phase of the beam transmitted through a crystalline material as a function of the rocking angle is a well known dynamical effect in x-ray scattering. Unfortunately, it is not so easy to measure directly these phase variations in a co nventional scattering experiment. It was recently suggested that the transmitted phase can be directly measured in ptychography experiments performed on nanocrystal samples. Results of such experiment for different crystal thickness, reflections and incoming photon energies, in principle, can be fully described in the frame of dynamical theory. However, dynamical theory does not provide a simple analytical expression for the further analysis. We develop here quasi-kinematical theory approach that allows to describe correctly the phase of the transmitted beam for the crystal thickness less than extinction length that is beyond applicability of the conventional kinematical theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا