ﻻ يوجد ملخص باللغة العربية
Variation of the phase of the beam transmitted through a crystalline material as a function of the rocking angle is a well known dynamical effect in x-ray scattering. Unfortunately, it is not so easy to measure directly these phase variations in a conventional scattering experiment. It was recently suggested that the transmitted phase can be directly measured in ptychography experiments performed on nanocrystal samples. Results of such experiment for different crystal thickness, reflections and incoming photon energies, in principle, can be fully described in the frame of dynamical theory. However, dynamical theory does not provide a simple analytical expression for the further analysis. We develop here quasi-kinematical theory approach that allows to describe correctly the phase of the transmitted beam for the crystal thickness less than extinction length that is beyond applicability of the conventional kinematical theory.
The experimental STM images for the CDW phase of the blue bronze RbMoO3 have been successfully explained on the basis of first-principles DFT calculations. Although the density of states near the Fermi level strongly concentrates in two of the three
In our previous study [Phys. Rev. B 86, 201104 (2012)] we introduced the so called quasi-non-uniform gradient-level exchange-correlation approximation (QNA) and demonstrated its strength in producing highly accurate equilibrium volumes for metals and
The optimized effective potential (OEP) method presents an unambiguous way to construct the Kohn-Sham potential corresponding to a given diagrammatic approximation for the exchange-correlation functional. The OEP from the random-phase approximation (
Starting from exact expression for the dynamical spin susceptibility in the time-dependent density functional theory a controversial issue about exchange interaction parameters and spin-wave excitation spectra of itinerant electron ferromagnets is re
We present a self-consistent electronic structure calculation method based on the {it Exact Muffin-Tin Orbitals} (EMTO) Theory developed by O. K. Andersen, O. Jepsen and G. Krier (in {it Lectures on Methods of Electronic Structure Calculations}, Ed.