ﻻ يوجد ملخص باللغة العربية
We propose a simple dynamic exchange-correlation kernel of the uniform electron gas. We model the reduction of the electron-electron interaction due to short-range exchange-correlation effects by introducing a frequency-dependent error-function effective interaction. By imposing the fulfillment of the compresibility and the third-frequency-moment sum rules, as well as the correct asymptotic behavior at large wave vectors, we find an accurate and simple dynamic exchange-correlation kernel that accurately reproduces the wave-vector analysis and the imaginary-frequency analysis of the correlation energy of the uniform electron gas.
The dynamical exchange-correlation kernel $f_{xc}$ of a non-uniform electron gas is an essential input for the time-dependent density functional theory of electronic systems. The long-wavelength behavior of this kernel is known to be of the form $f_{
In our previous study [Phys. Rev. B 86, 201104 (2012)] we introduced the so called quasi-non-uniform gradient-level exchange-correlation approximation (QNA) and demonstrated its strength in producing highly accurate equilibrium volumes for metals and
We develop a scheme for building the scalar exchange-correlation (xc) kernel of time-dependent density functional theory (TDDFT) from the tensorial kernel of time-dependent {em current} density functional theory (TDCDFT) and the Kohn-Sham current den
Density matrix quantum Monte Carlo (DMQMC) is used to sample exact-on-average $N$-body density matrices for uniform electron gas systems of up to 10$^{124}$ matrix elements via a stochastic solution of the Bloch equation. The results of these calcula
We propose a spatially and temporally nonlocal exchange-correlation (xc) kernel for the spin-unpolarized fluid phase of ground-state jellium, for use in time-dependent density functional and linear response calculations. The kernel is constructed to