ﻻ يوجد ملخص باللغة العربية
Peres lattices are employed as a visual method to identify the presence of chaos in different regions of the energy spectra in the Dicke model. The coexistence of regular and chaotic regions can be clearly observed for certain energy regions, even if the coupling constant is smaller than the critical value to reach superradiance. It also exhibits the presence of two Excited-State Quantum Phase Transitions, a static and a dynamic one. The diagonalization is performed in a extended bosonic coherent basis which enable us to reach a large number of excited states with good numerical convergence.
We have studied entanglement entropy and Husimi $Q$ distribution as a tool to explore chaos in the quantum two-photon Dicke model. With the increase of the energy of system, the linear entanglement entropy of coherent state prepared in the classical
We calculate numerically the fidelity and its susceptibility for the ground state of the Dicke model. A minimum in the fidelity identifies the critical value of the interaction where a quantum phase crossover, the precursor of a phase transition for
We study the ergodic -- non-ergodic transition in a generalized Dicke model with independent co- and counter rotating light-matter coupling terms. By studying level statistics, the average ratio of consecutive level spacings, and the quantum butterfl
The symmetry operators generating the hidden $mathbb{Z}_2$ symmetry of the asymmetric quantum Rabi model (AQRM) at bias $epsilon in frac{1}{2}mathbb{Z}$ have recently been constructed by V. V. Mangazeev et al. [J. Phys. A: Math. Theor. 54 12LT01 (202
We consider an important generalization of the Dicke model in which multi-level atoms, instead of two-level atoms as in conventional Dicke model, interact with a single photonic mode. We explore the phase diagram of a broad class of atom-photon coupl