ﻻ يوجد ملخص باللغة العربية
We study the ergodic -- non-ergodic transition in a generalized Dicke model with independent co- and counter rotating light-matter coupling terms. By studying level statistics, the average ratio of consecutive level spacings, and the quantum butterfly effect (out-of-time correlation) as a dynamical probe, we show that the ergodic -- non-ergodic transition in the Dicke model is a consequence of the proximity to the integrable limit of the model when one of the couplings is set to zero. This can be interpreted as a hint for the existence of a quantum analogue of the classical Kolmogorov-Arnold-Moser theorem. Besides, we show that there is no intrinsic relation between the ergodic -- non-ergodic transition and the precursors of the normal -- superradiant quantum phase transition.
The Dicke model famously exhibits a phase transition to a superradiant phase with a macroscopic population of photons and is realized in multiple settings in open quantum systems. In this work, we study a variant of the Dicke model where the cavity m
Using group-theoretical approach we found a family of four nine-parameter quantum states for the two-spin-1/2 Heisenberg system in an external magnetic field and with multiple components of Dzyaloshinsky-Moriya (DM) and Kaplan-Shekhtman-Entin-Wohlman
We study the quantum phase transition of the Dicke model in the classical oscillator limit, where it occurs already for finite spin length. In contrast to the classical spin limit, for which spin-oscillator entanglement diverges at the transition, en
The quantum dynamics of initial coherent states is studied in the Dicke model and correlated with the dynamics, regular or chaotic, of their classical limit. Analytical expressions for the survival probability, i.e. the probability of finding the sys