ﻻ يوجد ملخص باللغة العربية
We consider an important generalization of the Dicke model in which multi-level atoms, instead of two-level atoms as in conventional Dicke model, interact with a single photonic mode. We explore the phase diagram of a broad class of atom-photon coupling schemes and show that, under this generalization, the Dicke model can become multicritical. For a subclass of experimentally realizable schemes, multicritical conditions of arbitrary order can be expressed analytically in compact forms. We also calculate the atom-photon entanglement entropy for both critical and non-critical cases. We find that the order of the criticality strongly affects the critical entanglement entropy: higher order yields stronger entanglement. Our work provides deep insight into quantum phase transitions and multicriticality.
We theoretically study the dynamical phase diagram of the Dicke model in both classical and quantum limits using large, experimentally relevant system sizes. Our analysis elucidates that the model features dynamical critical points that are distinct
Laser-driven Bose-Einstein condensate of ultracold atoms loaded into a lossy high-finesse optical resonator exhibits critical behavior and, in the thermodynamic limit, a phase transition between stationary states of different symmetries. The system r
In a view of recent proposals for the realization of anisotropic light-matter interaction in such platforms as (i) non-stationary or inductively and capacitively coupled superconducting qubits, (ii) atoms in crossed fields and (iii) semiconductor het
We show that the motion of a laser-driven Bose-Einstein condensate in a high-finesse optical cavity realizes the spin-boson Dicke-model. The quantum phase transition of the Dicke-model from the normal to the superradiant phase corresponds to the self