ترغب بنشر مسار تعليمي؟ اضغط هنا

Coulomb-driven organization and enhancement of spin-orbit fields in collective spin excitations

312   0   0.0 ( 0 )
 نشر من قبل Florent Baboux
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin-orbit (SO) fields in a spin-polarized electron gas are studied by angle-resolved inelastic light scattering on a CdMnTe quantum well. We demonstrate a striking organization and enhancement of SO fields acting on the collective spin excitation (spin-flip wave). While individual electronic SO fields have a broadly distributed momentum dependence, giving rise to Dyakonov-Perel dephasing, the collective spin dynamics is governed by a single collective SO field which is drastically enhanced due to many-body effects. The enhancement factor is experimentally determined. These results provide a powerful indication that these constructive phenomena are universal to collective spin excitations of conducting systems.



قيم البحث

اقرأ أيضاً

Weyl semimetals are characterized by unconventional electromagnetic response. We present analytical expressions for all components of the frequency- and wave-vector-dependent charge-spin linear-response tensor of Weyl fermions. The spin-momentum lock ing of the Weyl Hamiltonian leads to a coupling between charge and longitudinal spin fluctuations, while transverse spin fluctuations remain decoupled from the charge. A real Weyl semimetal with multiple Weyl nodes can show this charge-spin coupling in equilibrium if its crystal symmetry is sufficiently low. All Weyl semimetals are expected to show this coupling if they are driven into a non-equilibrium stationary state with different occupations of Weyl nodes, for example by exploiting the chiral anomaly. Based on the response tensor, we investigate the low-energy collective excitations of interacting Weyl fermions. For a local Hubbard interaction, the charge-spin coupling leads to a dramatic change of the zero-sound dispersion: its velocity becomes independent of the interaction strength and the chemical potential and is given solely by the Fermi velocity. In the presence of long-range Coulomb interactions, the coupling transforms the plasmon modes into spin plasmons. For real Weyl semimetals with multiple Weyl nodes, the collective modes are strongly affected by the presence of parallel static electric and magnetic fields, due to the chiral anomaly. In particular, the zero-sound frequency at fixed momentum and the spin content of the spin plasmons go through cusp singularities as the chemical potential of one of the Weyl cones is tuned through the Weyl node. We discuss possible experiments that could provide smoking-gun evidence for Weyl physics.
We employ inelastic light scattering with magnetic fields to study intersubband spin plasmons in a quantum well. We demonstrate the existence of a giant collective spin-orbit (SO) field that splits the spin-plasmon spectrum into a triplet. The effect is remarkable as each individual electron would be expected to precess in its own momentum-dependent SO field, leading to Dyakonov-Perel dephasing. Instead, many-body effects lead to a striking organization of the SO fields at the collective level. The macroscopic spin moment is quantized by a uniform collective SO field, five times higher than the individual SO field. We provide a momentum-space cartography of this field.
Understanding the evolution of spin-orbit torque (SOT) with increasing heavy-metal thickness in ferromagnet/normal metal (FM/NM) bilayers is critical for the development of magnetic memory based on SOT. However, several experiments have revealed an a pparent discrepancy between damping enhancement and damping-like SOT regarding their dependence on NM thickness. Here, using linewidth and phase-resolved amplitude analysis of vector network analyzer ferromagnetic resonance (VNA-FMR) measurements, we simultaneously extract damping enhancement and both field-like and damping-like inverse SOT in Ni$_{80}$Fe$_{20}$/Pt bilayers as a function of Pt thickness. By enforcing an interpretation of the data which satisfies Onsager reciprocity, we find that both the damping enhancement and damping-like inverse SOT can be described by a single spin diffusion length ($approx$ 4 nm), and that we can separate the spin pumping and spin memory loss (SML) contributions to the total damping. This analysis indicates that less than 40% of the angular momentum pumped by FMR through the Ni$_{80}$Fe$_{20}$/Pt interface is transported as spin current into the Pt. On account of the SML and corresponding reduction in total spin current available for spin-charge transduction in the Pt, we determine the Pt spin Hall conductivity ($sigma_mathrm{SH} = (2.36 pm 0.04)times10^6 Omega^{-1} mathrm{m}^{-1}$) and bulk spin Hall angle ($theta_mathrm{SH}=0.387 pm0.008$) to be larger than commonly-cited values. These results suggest that Pt can be an extremely useful source of SOT if the FM/NM interface can be engineered to minimize SML. Lastly, we find that self-consistent fitting of the damping and SOT data is best achieved by a model with Elliott-Yafet spin relaxation and extrinsic inverse spin Hall effect, such that both the spin diffusion length and spin Hall conductivity are proportional to the Pt charge conductivity.
Electron spins in a two-dimensional electron gas (2DEG) can be manipulated by spin-orbit (SO) fields originating from either Rashba or Dresselhaus interactions with independent isotropic characteristics. Together, though, they produce anisotropic SO fields with consequences on quantum transport through spin interference. Here we study the transport properties of modelled mesoscopic rings subject to Rashba and Dresselhaus [001] SO couplings in the presence of an additional in-plane Zeeman field acting as a probe. By means of 1D and 2D quantum transport simulations we show that this setting presents anisotropies in the quantum resistance as a function of the Zeeman field direction. Moreover, the anisotropic resistance can be tuned by the Rashba strength up to the point to invert its response to the Zeeman field. We also find that a topological transition in the field texture that is associated with a geometric phase switching is imprinted in the anisotropy pattern. We conclude that resistance anisotropy measurements can reveal signatures of SO textures and geometric phases in spin carriers.
The existence of spin-currents in absence of any driving external fields is commonly considered an exotic phenomenon appearing only in quantum materials, such as topological insulators. We demonstrate instead that equilibrium spin currents are a rath er general property of materials with non negligible spin-orbit coupling (SOC). Equilibrium spin currents can be present at the surfaces of a slab. Yet, we also propose the existence of global equilibrium spin currents, which are net bulk spin-currents along specific crystallographic directions of materials. Equilibrium spin currents are allowed by symmetry in a very broad class of systems having gyrotropic point groups. The physics behind equilibrium spin currents is uncovered by making an analogy between electronic systems with SOC and non-Abelian gauge theories. The electron spin can be seen as the analogous of the color degree of freedom and equilibrium spin currents can then be identified with diamagnetic color currents appearing as the response to an effective non-Abelian magnetic field generated by SOC. Equilibrium spin currents are not associated with spin transport and accumulation, but they should nonetheless be carefully taken into account when computing transport spin currents. We provide quantitative estimates of equilibrium spin currents for several systems, specifically metallic surfaces presenting Rashba-like surface states, nitride semiconducting nanostructures and bulk materials, such as the prototypical gyrotropic medium tellurium. In doing so, we also point out the limitations of model approaches showing that first-principles calculations are needed to obtain reliable predictions. We therefore use Density Functional Theory computing the so-called bond currents, which represent a powerful tool to understand the relation between equilibrium currents, electronic structure and crystal point group.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا