ﻻ يوجد ملخص باللغة العربية
We present an example where Spontaneous Symmetry Breaking may effect not only the behavior of the entanglement at Quantum Phase Transitions, but also the origin of the non-analyticity. In particular, in the XXZ model, we study the non analyticities in the concurrence between two spins, which was claimed to be accidental, since it had its origin in the optimization involved in the concurrence definition. We show that when one takes in account the effect of the Spontaneous Symmetry Breaking, even tough the values of the entanglement measure does not change, the origin the the non-analytical behavior changes: it is not due to the optimization process anymore and in this sense it is a natural non-analyticity. This is a much more subtle influence of the Spontaneous Symmetry Breaking not noticed before. However the non-analytical behavior still suggests a second order quantum phase transition and not the first order that occurs and we explain why. We also show that the value of entanglement between one site and the rest of the chain does change when taking into account the Spontaneous Symmetry Breaking.
In this work, we establish a general theory of phase transitions and quantum entanglement in the equilibrium state at arbitrary temperatures. First, we derived a set of universal functional relations between the matrix elements of two-body reduced de
A unified description of i) classical phase transitions and their remnants in finite systems and ii) quantum phase transitions is presented. The ensuing discussion relies on the interplay between, on the one hand, the thermodynamic concepts of temper
In this article we provide a review of geometrical methods employed in the analysis of quantum phase transitions and non-equilibrium dissipative phase transitions. After a pedagogical introduction to geometric phases and geometric information in the
Motivated by the quantum adiabatic algorithm (QAA), we consider the scaling of the Hamiltonian gap at quantum first order transitions, generally expected to be exponentially small in the size of the system. However, we show that a quantum antiferroma
We investigate entanglement properties at quantum phase transitions of an integrable extended Hubbard model in the momentum space representation. Two elementary subsystems are recognized: the single mode of an electron, and the pair of modes (electro