ﻻ يوجد ملخص باللغة العربية
We investigate entanglement properties at quantum phase transitions of an integrable extended Hubbard model in the momentum space representation. Two elementary subsystems are recognized: the single mode of an electron, and the pair of modes (electrons coupled through the eta-pairing mechanism). We first detect the two/multi-partite nature of each quantum phase transition by a comparative study of the singularities of Von Neumann entropy and quantum mutual information. We establish the existing relations between the correlations in the momentum representation and those exhibited in the complementary picture: the direct lattice representation. The presence of multipartite entanglement is then investigated in detail through the Q-measure, namely a generalization of the Meyer-Wallach measure of entanglement. Such a measure becomes increasingly sensitive to correlations of a multipartite nature increasing the size of the reduced density matrix. In momentum space, we succeed in obtaining the latter for our system at arbitrary size and we relate its behaviour to the nature of the various QPTs.
We investigate the behavior of genuine multiparticle entanglement, as quantified by the generalized geometric measure, in gapless-to-gapped quantum transitions of one- and two-dimensional quantum spin models. The investigations are performed in the e
In this work, we establish a general theory of phase transitions and quantum entanglement in the equilibrium state at arbitrary temperatures. First, we derived a set of universal functional relations between the matrix elements of two-body reduced de
We study the ground-state entanglement in the quantum Ising model with nearest neighbor ferromagnetic coupling $J$ and find a sequential increase of entanglement depth with growing $J$. This entanglement avalanche starts with two-point entanglement,
Multipartite entanglement tomography, namely the quantum Fisher information (QFI) calculated with respect to different collective operators, allows to fully characterize the phase diagram of the quantum Ising chain in a transverse field with variable
Fidelity plays an important role in measuring distances between pairs of quantum states, of single as well as multiparty systems. Based on the concept of fidelity, we introduce a physical quantity, shared purity, for arbitrary pure or mixed quantum s