ترغب بنشر مسار تعليمي؟ اضغط هنا

On the distribution of the density of maximal order elements in general linear groups

142   0   0.0 ( 0 )
 نشر من قبل Stefanos Aivazidis
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we consider the density of maximal order elements in $mathrm{GL}_n(q)$. Fixing any of the rank $n$ of the group, the characteristic $p$ or the degree $r$ of the extension of the underlying field $mathbb{F}_q$ of size $q=p^r$, we compute the expected value of the said density and establish that it follows a distribution law.



قيم البحث

اقرأ أيضاً

Let $G$ be a connected, absolutely almost simple, algebraic group defined over a finitely generated, infinite field $K$, and let $Gamma$ be a Zariski dense subgroup of $G(K)$. We show, apart from some few exceptions, that the commensurability class o f the field $mathcal{F}$ given by the compositum of the splitting fields of characteristic polynomials of generic elements of $Gamma$ determines the group $G$ upto isogeny over the algebraic closure of $K$.
In previous work, the authors confirmed the speculation of J. G. Thompson that certain multiquadratic fields are generated by specified character values of sufficiently large alternating groups $A_n$. Here we address the natural generalization of thi s speculation to the finite general linear groups $mathrm{GL}_mleft(mathbb{F}_qright)$ and $mathrm{SL}_2left(mathbb{F}_qright)$.
Let W be an arbitrary Coxeter group. If two elements have expressions that are cyclic shifts of each other (as words), then they are conjugate (as group elements) in W. We say that w is cyclically fully commutative (CFC) if every cyclic shift of any reduced expression for w is fully commutative (i.e., avoids long braid relations). These generalize Coxeter elements in that their reduced expressions can be described combinatorially by acyclic directed graphs, and cyclically shifting corresponds to source-to-sink
We classify all triples $(G,V,H)$ such that $SL_n(q)leq Gleq GL_n(q)$, $V$ is a representation of $G$ of dimension greater than one over an algebraically closed field $FF$ of characteristic coprime to $q$, and $H$ is a proper subgroup of $G$ such tha t the restriction $Vdar_{H}$ is irreducible. This problem is a natural part of the Aschbacher-Scott program on maximal subgroups of finite classical groups.
In the 1990s, J.H. Conway published a combinatorial-geometric method for analyzing integer-valued binary quadratic forms (BQFs). Using a visualization he named the topograph, Conway revisited the reduction of BQFs and the solution of quadratic Diopha ntine equations such as Pells equation. It appears that the crux of his method is the coincidence between the arithmetic group $PGL_2({mathbb Z})$ and the Coxeter group of type $(3,infty)$. There are many arithmetic Coxeter groups, and each may have unforeseen applications to arithmetic. We introduce Conways topograph, and generalizations to other arithmetic Coxeter groups. This includes a study of arithmetic flags and variants of binary quadratic forms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا