ﻻ يوجد ملخص باللغة العربية
In the 1990s, J.H. Conway published a combinatorial-geometric method for analyzing integer-valued binary quadratic forms (BQFs). Using a visualization he named the topograph, Conway revisited the reduction of BQFs and the solution of quadratic Diophantine equations such as Pells equation. It appears that the crux of his method is the coincidence between the arithmetic group $PGL_2({mathbb Z})$ and the Coxeter group of type $(3,infty)$. There are many arithmetic Coxeter groups, and each may have unforeseen applications to arithmetic. We introduce Conways topograph, and generalizations to other arithmetic Coxeter groups. This includes a study of arithmetic flags and variants of binary quadratic forms.
Motivated by a recent result of Prasad, we consider three stronger notions of arithmetic equivalence: local integral equivalence, integral equivalence, and solvable equivalence. In addition to having the same Dedekind zeta function (the usual notion
We prove that there are only finitely many conjugacy classes of arithmetic maximal hyperbolic reflection groups.
We formulate a general question regarding the size of the iterated Galois groups associated to an algebraic dynamical system and then we discuss some special cases of our question.
Given an abelian group $G$, it is natural to ask whether there exists a permutation $pi$ of $G$ that destroys all nontrivial 3-term arithmetic progressions (APs), in the sense that $pi(b) - pi(a) eq pi(c) - pi(b)$ for every ordered triple $(a,b,c) i
The arithmetic complexity $c(mathscr{A}_{theta})$ of a noncommutative torus $mathscr{A}_{theta}$ measures the rank $r$ of a rational elliptic curve $mathscr{E}(K)cong mathbf{Z}^r oplus mathscr{E}_{tors}$ via the formula $r= c(mathscr{A}_{theta})-1$.