ﻻ يوجد ملخص باللغة العربية
In electricity markets, it is sensible to use a two-factor model with mean reversion for spot prices. One of the factors is an Ornstein-Uhlenbeck (OU) process driven by a Brownian motion and accounts for the small variations. The other factor is an OU process driven by a pure jump Levy process and models the characteristic spikes observed in such markets. When it comes to pricing, a popular choice of pricing measure is given by the Esscher transform that preserves the probabilistic structure of the driving Levy processes, while changing the levels of mean reversion. Using this choice one can generate stochastic risk premiums (in geometric spot models) but with (deterministically) changing sign. In this paper we introduce a pricing change of measure, which is an extension of the Esscher transform. With this new change of measure we also can slow down the speed of mean reversion and generate stochastic risk premiums with stochastic non constant sign, even in arithmetic spot models. In particular, we can generate risk profiles with positive values in the short end of the forward curve and negative values in the long end. Finally, our pricing measure allows us to have a stationary spot dynamics while still having randomly fluctuating forward prices for contracts far from maturity.
In this paper we consider the pricing of variable annuities (VAs) with guaranteed minimum withdrawal benefits. We consider two pricing approaches, the classical risk-neutral approach and the benchmark approach, and we examine the associated static an
This paper considers exponential utility indifference pricing for a multidimensional non-traded assets model subject to inter-temporal default risk, and provides a semigroup approximation for the utility indifference price. The key tool is the splitt
The goal of this paper is to investigate the method outlined by one of us (PR) in Cherubini et al. (2009) to compute option prices. We name it the SINC approach. While the COS method by Fang and Osterlee (2009) leverages the Fourier-cosine expansion
For a commodity spot price dynamics given by an Ornstein-Uhlenbeck process with Barndorff-Nielsen and Shephard stochastic volatility, we price forwards using a class of pricing measures that simultaneously allow for change of level and speed in the m
We consider thin incomplete financial markets, where traders with heterogeneous preferences and risk exposures have motive to behave strategically regarding the demand schedules they submit, thereby impacting prices and allocations. We argue that tra