Negative type inequalities arise in the study of embedding properties of metric spaces, but they often reduce to intractable combinatorial problems. In this paper we study more quantitati
A metric space $X$ is rigid if the isometry group of $X$ is trivial. The finite ultrametric spaces $X$ with $|X| geq 2$ are not rigid since for every such $X$ there is a self-isometry having exactly $|X|-2$ fixed points. Using the representing trees
we characterize the finite ultrametric spaces $X$ for which every self-isometry has at least $|X|-2$ fixed points. Some other extremal properties of such spaces and related graph theoretical characterizations are also obtained.
Let (X,d) be a metric space of p-negative type. Recently I. Doust and A. Weston introduced a quantification of the p-negative type property, the so called gap {Gamma} of X. This talk introduces some formulas for the gap {Gamma} of a finite metric spa
ce of strict p-negative type and applies them to evaluate {Gamma} for some concrete finite metric spaces.
Let (X,d) be a finite metric space. This paper first discusses the spectrum of the p-distance matrix of a finite metric space of p-negative type and then gives upper and lower bounds for the so called gap of a finite metric space of strict p-negative
type. Furthermore estimations for the gap under a certain glueing construction for finite metric spaces are given and finally be applied to finite ultrametric spaces.
The necessary and sufficient conditions under which a given family $mathcal{F}$ of subsets of finite set $X$ coincides with the family $mathbf{B}_X$ of all balls generated by some ultrametric $d$ on $X$ are found. It is shown that the representing tr
ee of the ultrametric space $(mathbf{B}_{X}, d_H)$ with the Hausdorff distance $d_H$ can be obtained from the representing tree $T_X$ of ultrametric space $(X, d)$ by adding a leaf to every internal vertex of $T_X$.
We study extremal properties of finite ultrametric spaces $X$ and related properties of representing trees $T_X$. The notion of weak similarity for such spaces is introduced and related morphisms of labeled rooted trees are found. It is shown that th
e finite rooted trees are isomorphic to the rooted trees of nonsingular balls of special finite ultrametric spaces. We also found conditions under which the isomorphism of representing trees $T_X$ and $T_Y$ implies the isometricity of ultrametric spaces $X$ and $Y$.