ﻻ يوجد ملخص باللغة العربية
Let (X,d) be a metric space of p-negative type. Recently I. Doust and A. Weston introduced a quantification of the p-negative type property, the so called gap {Gamma} of X. This talk introduces some formulas for the gap {Gamma} of a finite metric space of strict p-negative type and applies them to evaluate {Gamma} for some concrete finite metric spaces.
Let (X,d) be a finite metric space. This paper first discusses the spectrum of the p-distance matrix of a finite metric space of p-negative type and then gives upper and lower bounds for the so called gap of a finite metric space of strict p-negative
Negative type inequalities arise in the study of embedding properties of metric spaces, but they often reduce to intractable combinatorial problems. In this paper we study more quantitati
In this work we provide a way to introduce a probability measure on the space of minimal fillings of finite additive metric spaces as well as an algorithm for its computation. The values of probability, got from the analytical solution, coincide with
An important problem that commonly arises in areas such as internet traffic-flow analysis, phylogenetics and electrical circuit design, is to find a representation of any given metric $D$ on a finite set by an edge-weighted graph, such that the total
We study a measure-theoretic notion of connectedness for sets of finite perimeter in the setting of doubling metric measure spaces supporting a weak $(1,1)$-Poincar{e} inequality. The two main results we obtain are a decomposition theorem into indeco