ﻻ يوجد ملخص باللغة العربية
We examine a new path transform on 1-dimensional simple random walks and Brownian motion, the quantile transform. This transformation relates to identities in fluctuation theory due to Wendel, Port, Dassios and others, and to discrete and Browni
We define a correlated random walk (CRW) induced from the time evolution matrix (the Grover matrix) of the Grover walk on a graph $G$, and present a formula for the characteristic polynomial of the transition probability matrix of this CRW by using a
We study a random walk on $mathbb{F}_p$ defined by $X_{n+1}=1/X_n+varepsilon_{n+1}$ if $X_n eq 0$, and $X_{n+1}=varepsilon_{n+1}$ if $X_n=0$, where $varepsilon_{n+1}$ are independent and identically distributed. This can be seen as a non-linear analo
We consider Boolean functions f:{-1,1}^n->{-1,1} that are close to a sum of independent functions on mutually exclusive subsets of the variables. We prove that any such function is close to just a single function on a single subset. We also conside
In 1991, Persi Diaconis and Daniel Stroock obtained two canonical path bounds on the second largest eigenvalue for simple random walk on a connected graph, the Poincare and Cheeger bounds, and they raised the question as to whether the Poincare bound
We study the Doobs $h$-transform of the two-dimensional simple random walk with respect to its potential kernel, which can be thought of as the two-dimensional simple random walk conditioned on never hitting the origin. We derive an explicit formula