ترغب بنشر مسار تعليمي؟ اضغط هنا

Conditioned two-dimensional simple random walk: Greens function and harmonic measure

53   0   0.0 ( 0 )
 نشر من قبل Serguei Popov
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Serguei Popov




اسأل ChatGPT حول البحث

We study the Doobs $h$-transform of the two-dimensional simple random walk with respect to its potential kernel, which can be thought of as the two-dimensional simple random walk conditioned on never hitting the origin. We derive an explicit formula for the Greens function of this random walk, and also prove a quantitative result on the speed of convergence of the (conditional) entrance measure to the harmonic measure (for the conditioned walk) on a finite set.



قيم البحث

اقرأ أيضاً

Place an obstacle with probability $1-p$ independently at each vertex of $mathbb Z^d$ and consider a simple symmetric random walk that is killed upon hitting one of the obstacles. For $d geq 2$ and $p$ strictly above the critical threshold for site p ercolation, we condition on the environment such that the origin is contained in an infinite connected component free of obstacles. It has previously been shown that with high probability, the random walk conditioned on survival up to time $n$ will be localized in a ball of volume asymptotically $dlog_{1/p}n$. In this work, we prove that this ball is free of obstacles, and we derive the limiting one-time distributions of the random walk conditioned on survival. Our proof is based on obstacle modifications and estimates on how such modifications affect the probability of the obstacle configurations as well as their associated Dirichlet eigenvalues, which is of independent interest.
We consider a discrete time simple symmetric random walk among Bernoulli obstacles on $mathbb{Z}^d$, $dgeq 2$, where the walk is killed when it hits an obstacle. It is known that conditioned on survival up to time $N$, the random walk range is asympt otically contained in a ball of radius $varrho_N=C N^{1/(d+2)}$ for any $dgeq 2$. For $d=2$, it is also known that the range asymptotically contains a ball of radius $(1-epsilon)varrho_N$ for any $epsilon>0$, while the case $dgeq 3$ remains open. We complete the picture by showing that for any $dgeq 2$, the random walk range asymptotically contains a ball of radius $varrho_N-varrho_N^epsilon$ for some $epsilon in (0,1)$. Furthermore, we show that its boundary is of size at most $varrho_N^{d-1}(log varrho_N)^a$ for some $a>0$.
We derive properties of the rate function in Varadhans (annealed) large deviation principle for multidimensional, ballistic random walk in random environment, in a certain neighborhood of the zero set of the rate function. Our approach relates the LD P to that of regeneration times and distances. The analysis of the latter is possible due to the i.i.d. structure of regenerations.
We consider a random walk with a negative drift and with a jump distribution which under Cramers change of measure belongs to the domain of attraction of a spectrally positive stable law. If conditioned to reach a high level and suitably scaled, this random walk converges in law to a nondecreasing Markov process which can be interpreted as a spectrally-positive Levy %-Khinchin process conditioned not to overshoot level one.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا