ﻻ يوجد ملخص باللغة العربية
We study the Doobs $h$-transform of the two-dimensional simple random walk with respect to its potential kernel, which can be thought of as the two-dimensional simple random walk conditioned on never hitting the origin. We derive an explicit formula for the Greens function of this random walk, and also prove a quantitative result on the speed of convergence of the (conditional) entrance measure to the harmonic measure (for the conditioned walk) on a finite set.
Place an obstacle with probability $1-p$ independently at each vertex of $mathbb Z^d$ and consider a simple symmetric random walk that is killed upon hitting one of the obstacles. For $d geq 2$ and $p$ strictly above the critical threshold for site p
We consider a discrete time simple symmetric random walk among Bernoulli obstacles on $mathbb{Z}^d$, $dgeq 2$, where the walk is killed when it hits an obstacle. It is known that conditioned on survival up to time $N$, the random walk range is asympt
We derive properties of the rate function in Varadhans (annealed) large deviation principle for multidimensional, ballistic random walk in random environment, in a certain neighborhood of the zero set of the rate function. Our approach relates the LD
We consider a random walk with a negative drift and with a jump distribution which under Cramers change of measure belongs to the domain of attraction of a spectrally positive stable law. If conditioned to reach a high level and suitably scaled, this
The problem of the strain of smectics subjected to a force distributed over a line in the basal plane has been solved.