ﻻ يوجد ملخص باللغة العربية
We present near infrared spectroscopic observations of 19 molecular clouds made using the AKARI satellite, and the data reduction pipeline written to analyse those observations. The 2.5 --~5 $mu$m spectra of 30 objects -- 22 field stars behind quiescent molecular clouds and eight low mass YSOs in cores -- were successfully extracted using the pipeline. Those spectra are further analysed to calculate the column densities of key solid phase molecular species, including H$_2$O, CO$_2$, CO, and OCN$^-$. The profile of the H$_2$O ice band is seen to vary across the objects observed and we suggest that the extended red wing may be an evolutionary indicator of both dust and ice mantle properties. The observation of 22 spectra with fluxes as low as $<$~5 mJy towards background stars, including 15 where the column densities of H$_2$O, CO and CO$_2$ were calculated, provides valuable data that could help to benchmark the initial conditions in star-forming regions prior to the onset of star formation.
Intermediate-mass young stellar objects (YSOs) provide a link to understand how feedback from shocks and UV radiation scales from low to high-mass star forming regions. Aims: Our aim is to analyze excitation of CO and H$_2$O in deeply-embedded interm
The earliest atmospheres of rocky planets originate from extensive volatile release during magma ocean epochs that occur during assembly of the planet. These establish the initial distribution of the major volatile elements between different chemical
We present the results from a survey, designed to investigate the accretion process of massive young stellar objects (MYSOs) through near infrared narrow band imaging using the H$_2$ $ u$=1-0 S(1) transition filter. A sample of 353 Massive Young Stel
To investigate the composition and evolution of circumstellar ice around low-mass YSOs, we observed ice absorption bands in the near infrared (NIR) towards eight YSOs ranging from class 0 to class II, among which seven are associated with edge-on dis
We present a computational study into the adsorption properties of CO$_2$ on amorphous and crystalline water surfaces under astrophysically relevant conditions. Water and carbon dioxide are two of the most dominant species in the icy mantles of inter