ﻻ يوجد ملخص باللغة العربية
Any practical realization of entanglement-based quantum communication must be intrinsically secure and able to span long distances avoiding the need of a straight line between the communicating parties. The violation of Bells inequality offers a method for the certification of quantum links without knowing the inner workings of the devices. Energy-time entanglement quantum communication satisfies all these requirements. However, currently there is a fundamental obstacle with the standard configuration adopted: an intrinsic geometrical loophole that can be exploited to break the security of the communication, in addition to other loopholes. Here we show the first experimental Bell violation with energy-time entanglement distributed over 1 km of optical fibers that is free of this geometrical loophole. This is achieved by adopting a new experimental design, and by using an actively stabilized fiber-based long interferometer. Our results represent an important step towards long-distance secure quantum communication in optical fibers.
We propose a hybrid (continuous-discrete variable) quantum repeater protocol for distribution of entanglement over long distances. Starting from entangled states created by means of single-photon detection, we show how entangled coherent state superp
We show two experimental realizations of Hardy ladder test of quantum nonlocality using energy-time correlated photons, following the scheme proposed by A. Cabello emph{et al.} [Phys. Rev. Lett. textbf{102}, 040401 (2009)]. Unlike, previous energy-ti
We report the observation of entanglement between a single trapped atom and a single photon at remote locations. The degree of coherence of the entangled atom-photon pair is verified via appropriate local correlation measurements, after communicating
Quantum key distribution(QKD) is an important area in quantum information theory. Nowadays, there are many protocols such as BB84 protocol, Lo-Chaus protocol and GR10 protocol. They usually require legitimated parties have the ability to create parti
The existence of non-local quantum correlations is certainly the most important specific property of the quantum world. However, it is a challenging task to distinguish correlations of classical origin from genuine quantum correlations, especially wh