ﻻ يوجد ملخص باللغة العربية
We show two experimental realizations of Hardy ladder test of quantum nonlocality using energy-time correlated photons, following the scheme proposed by A. Cabello emph{et al.} [Phys. Rev. Lett. textbf{102}, 040401 (2009)]. Unlike, previous energy-time Bell experiments, these tests require precise tailored nonmaximally entangled states. One of them is equivalent to the two-setting two-outcome Bell test requiring a minimum detection efficiency. The reported experiments are still affected by the locality and detection loopholes, but are free of the post-selection loophole of previous energy-time and time-bin Bell tests.
We explore the relationship between randomness and nonlocality based on arguments which demonstrate nonlocality without requiring Bell-type inequalities, such as using Hardy relations and its variant like Cabello-Liang (CL) relations. We first clarif
The network structure offers in principle the possibility for novel forms of quantum nonlocal correlations, that are proper to networks and cannot be traced back to standard quantum Bell nonlocality. Here we define a notion of genuine network quantum
Any practical realization of entanglement-based quantum communication must be intrinsically secure and able to span long distances avoiding the need of a straight line between the communicating parties. The violation of Bells inequality offers a meth
We study the relations between quantum coherence and quantum nonlocality, genuine quantum entanglement and genuine quantum nonlocality. We show that the coherence of a qubit state can be converted to the nonlocality of two-qubit states via incoherent
We study the dynamics of genuine multipartite entanglement for quantum systems upto four qubits interacting with general collective dephasing process. Using a computable entanglement monotone for multipartite systems, we observe the feature of freezi