ﻻ يوجد ملخص باللغة العربية
In e+e- event shapes studies at LEP, two different measurements were sometimes performed: a calorimetric measurement using both charged and neutral particles, and a track-based measurement using just charged particles. Whereas calorimetric measurements are infrared and collinear safe and therefore calculable in perturbative QCD, track-based measurements necessarily depend on non-perturbative hadronization effects. On the other hand, track-based measurements typically have smaller experimental uncertainties. In this paper, we present the first calculation of the event shape track thrust and compare to measurements performed at ALEPH and DELPHI. This calculation is made possible through the recently developed formalism of track functions, which are non-perturbative objects describing how energetic partons fragment into charged hadrons. By incorporating track functions into soft-collinear effective theory, we calculate the distribution for track thrust with next-to-leading logarithmic resummation. Due to a partial cancellation between non-perturbative parameters, the distributions for calorimeter thrust and track thrust are remarkably similar, a feature also seen in LEP data.
Collider experiments often exploit information about the quantum numbers of final state hadrons to maximize their sensitivity, with applications ranging from the use of tracking information (electric charge) for precision jet substructure measurement
Track-assisted mass is a proxy for jet mass that only uses direction information from charged particles, allowing it to be measured at the Large Hadron Collider with very fine angular resolution. In this paper, we introduce a generalization of track-
When high-energy single-hadron production takes place inside an identified jet, there are important correlations between the fragmentation and phase-space cuts. For example, when one-hadron yields are measured in on-resonance B-factory data, a cut on
Future upgrades to the LHC will pose considerable challenges for traditional particle track reconstruction methods. We investigate how artificial Neural Networks and Deep Learning could be used to complement existing algorithms to increase performanc
This paper describes the track-finding algorithm that is used for event reconstruction in the Belle II experiment operating at the SuperKEKB B-factory in Tsukuba, Japan. The algorithm is designed to balance the requirements of a high efficiency to fi