ﻻ يوجد ملخص باللغة العربية
When high-energy single-hadron production takes place inside an identified jet, there are important correlations between the fragmentation and phase-space cuts. For example, when one-hadron yields are measured in on-resonance B-factory data, a cut on the thrust event shape T is required to remove the large b-quark contribution. This leads to a dijet final state restriction for the light-quark fragmentation process. Here we complete our analysis of unpolarized fragmentation of (light) quarks and gluons to a light hadron h with energy fraction z in e+ e- -> dijet + h at the center-of-mass energy Q=10.58 GeV. In addition to the next-to-next-to-leading order resummation of logarithms of 1-T, we include the next-to-leading order (NLO) nonsingular O(1-T) contribution to the cross section, the resummation of threshold logarithms of 1-z, and the leading nonperturbative contribution to the soft function. Our results for the correlations between fragmentation and the thrust cut are presented in a way that can be directly tested against B-factory data. These correlations are also observed in Pythia, but are surprisingly smaller at NLO.
In e+e- event shapes studies at LEP, two different measurements were sometimes performed: a calorimetric measurement using both charged and neutral particles, and a track-based measurement using just charged particles. Whereas calorimetric measuremen
We derive the transverse momentum dependent (TMD) factorization and resummation formula of the unpolarized transverse momentum distribution ($j_T$) for the single hadron production with the thrust axis in electron-positron collision. Two different ki
Recently the LHCb collaboration has measured both longitudinal and transverse momentum distribution of hadrons produced inside $Z$-tagged jets in proton-proton collisions at the Large Hadron Collider. These distributions are commonly referred to as j
We address the propagation and hadronization of a struck quark by studying the gauge invariance of the color-averaged cut quark propagator, and by relating this to the single inclusive quark fragmentation correlator by means of new sum rules. Using s
The first direct observation of time-reversal (T) violation in the $Bbar{B}$ system has been reported by the BaBar collaboration, employing the method of Ba$tilde {rm n}!$uls and Bernabeu. Given this, we generalize their analysis of the time-dependen