ترغب بنشر مسار تعليمي؟ اضغط هنا

Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths

204   0   0.0 ( 0 )
 نشر من قبل Abdul Shakooor
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Silicon is now firmly established as a high performance photonic material. Its only weakness is the lack of a native electrically driven light emitter that operates CW at room temperature, exhibits a narrow linewidth in the technologically important 1300- 1600 nm wavelength window, is small and operates with low power consumption. Here, an electrically pumped all-silicon nano light source around 1300-1600 nm range is demonstrated at room temperature. Using hydrogen plasma treatment, nano-scale optically active defects are introduced into silicon, which then feed the photonic crystal nanocavity to enahnce the electrically driven emission in a device via Purcell effect. A narrow ({Delta}{lambda} = 0.5 nm) emission line at 1515 nm wavelength with a power density of 0.4 mW/cm2 is observed, which represents the highest spectral power density ever reported from any silicon emitter. A number of possible improvements are also discussed, that make this scheme a very promising light source for optical interconnects and other important silicon photonics applications.



قيم البحث

اقرأ أيضاً

We demonstrate tunable frequency-converted light mediated by a chi-(2) nonlinear photonic crystal nanocavity. The wavelength-scale InP-based cavity supports two closely-spaced localized modes near 1550 nm which are resonantly excited by a 130 fs lase r pulse. The cavity is simultaneously irradiated with a non-resonant probe beam, giving rise to rich second-order scattering spectra reflecting nonlinear mixing of the different resonant and non-resonant components. In particular, we highlight the radiation at the sum frequencies of the probe beam and the respective cavity modes. This would be a useful, minimally-invasive monitor of the joint occupancy state of multiple cavities in an integrated optical circuit.
We present results on electrically driven nanobeam photonic crystal cavities formed out of a lateral p-i-n junction in gallium arsenide. Despite their small conducting dimensions, nanobeams have robust electrical properties with high current densitie s possible at low drive powers. Much like their two-dimensional counterparts, the nanobeam cavities exhibit bright electroluminescence at room temperature from embedded 1,250 nm InAs quantum dots. A small room temperature differential gain is observed in the cavities with minor beam self-heating suggesting that lasing is possible. These results open the door for efficient electrical control of active nanobeam cavities for diverse nanophotonic applications.
We report direct evidence of enhanced spontaneous emission in a photonic crystal (PhC) light-emitting diode. The device consists of p-i-n heterojunction embedded in a suspended membrane, comprising a layer of self-assembled quantum dots. Current is i njected laterally from the periphery to the center of the PhC. A well-isolated emission peak at 1300nm from the PhC cavity mode is observed, and the enhancement of the spontaneous emission rate is clearly evidenced by time-resolved electroluminescence measurements, showing that our diode switches off in a time shorter than the bulk radiative and nonradiative lifetimes
Interest in photonic crystal nanocavities is fueled by advances in device performance, particularly in the development of low-threshold laser sources. Effective electrical control of high performance photonic crystal lasers has thus far remained elus ive due to the complexities associated with current injection into cavities. A fabrication procedure for electrically pumping photonic crystal membrane devices using a lateral p-i-n junction has been developed and is described in this work. We have demonstrated electrically pumped lasing in our junctions with a threshold of 181 nA at 50K - the lowest threshold ever demonstrated in an electrically pumped laser. At room temperature we find that our devices behave as single-mode light-emitting diodes (LEDs), which when directly modulated, have an ultrafast electrical response up to 10 GHz corresponding to less than 1 fJ/bit energy operation - the lowest for any optical transmitter. In addition, we have demonstrated electrical pumping of photonic crystal nanobeam LEDs, and have built fiber taper coupled electro-optic modulators. Fiber-coupled photodetectors based on two-photon absorption are also demonstrated as well as multiply integrated components that can be independently electrically controlled. The presented electrical injection platform is a major step forward in providing practical low power and integrable devices for on-chip photonics.
In weakly spin-orbit coupled materials, the spin-selective nature of recombination can give rise to large magnetic-field effects, for example on electro-luminescence from molecular semiconductors. While silicon has weak spin-orbit coupling, observing spin-dependent recombination through magneto-electroluminescence is challenging due to the inefficiency of emission due to silicons indirect band-gap, and to the difficulty in separating spin-dependent phenomena from classical magneto-resistance effects. Here we overcome these challenges to measure magneto-electroluminescence in silicon light-emitting diodes fabricated via gas immersion laser doping. These devices allow us to achieve efficient emission while retaining a well-defined geometry thus suppressing classical magnetoresistance effects to a few percent. We find that electroluminescence can be enhanced by up to 300% near room temperature in a seven Tesla magnetic field showing that the control of the spin degree of freedom can have a strong impact on the efficiency of silicon LEDs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا