ﻻ يوجد ملخص باللغة العربية
We demonstrate tunable frequency-converted light mediated by a chi-(2) nonlinear photonic crystal nanocavity. The wavelength-scale InP-based cavity supports two closely-spaced localized modes near 1550 nm which are resonantly excited by a 130 fs laser pulse. The cavity is simultaneously irradiated with a non-resonant probe beam, giving rise to rich second-order scattering spectra reflecting nonlinear mixing of the different resonant and non-resonant components. In particular, we highlight the radiation at the sum frequencies of the probe beam and the respective cavity modes. This would be a useful, minimally-invasive monitor of the joint occupancy state of multiple cavities in an integrated optical circuit.
We measure the dynamics of the thermo-optical nonlinearity of both a mode-gap nanocavity and a delocalized mode in a Ga$_{mathrm{0.51}}$In$_{mathrm{0.49}}$P photonic crystal membrane. We model these results in terms of heat transport and thermo-optic
Interest in photonic crystal nanocavities is fueled by advances in device performance, particularly in the development of low-threshold laser sources. Effective electrical control of high performance photonic crystal lasers has thus far remained elus
We experimentally study a Stub photonic lattice and excite their localized linear states originated from an isolated Flat Band at the center of the linear spectrum. By exciting these modes in different regions of the lattice, we observe that they do
Strongly enhanced third-harmonic generation (THG) by the topological localization of an edge mode in a Su-Schrieffer-Heeger (SSH) chain of silicon photonic crystal nanocavities is demonstrated. The edge mode of the nanocavity chain not only naturally
Silicon is now firmly established as a high performance photonic material. Its only weakness is the lack of a native electrically driven light emitter that operates CW at room temperature, exhibits a narrow linewidth in the technologically important