ﻻ يوجد ملخص باللغة العربية
In this paper, we present path loss model for VANETs and simulate three routing protocols; Destination Sequenced Distance Vector (DSDV), Optimized Link State Routing (OLSR) and Dynamic MANET On-demand (DYMO) to evaluate and compare their performance using NS-2. The main contribution of this work is enhancement of existing techniques to achieve high efficiency of the underlying networks. After extensive simulations in NS-2, we conclude that DSDV best performs with 802.11p while DYMO gives outstanding performance with 802.11.
This paper presents path loss model along with framework for probability distribution function for VANETs. Furthermore, we simulate three routing protocols Destination Sequenced Distance Vector (DSDV), Optimized Link State Routing (OLSR) and Dynamic
The area of mobile ad hoc networking has received considerable attention of the research community in recent years. These networks have gained immense popularity primarily due to their infrastructure-less mode of operation which makes them a suitable
In this document, we are primarily interested in computing the probabilities of various types of dependencies that can occur in a multi-cell infrastructure network.
In this work, we present the results of a wideband measurement campaign at 60 GHz conducted inside a Linkker electric city bus. Targeting prospective millimeter-wave (mmWave) public transportation wearable scenarios, we mimic a typical deployment of
Emerging 802.11p vehicle-to-vehicle (V2V) networks rely on periodic Basic Safety Messages (BSMs) to disseminate time-sensitive safety-critical information, such as vehicle position, speed, and heading -- that enables several safety applications and h