ترغب بنشر مسار تعليمي؟ اضغط هنا

Hybrid Scenario Based Performance Analysis of DSDV and DSR

105   0   0.0 ( 0 )
 نشر من قبل Koushik Majumder
 تاريخ النشر 2010
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The area of mobile ad hoc networking has received considerable attention of the research community in recent years. These networks have gained immense popularity primarily due to their infrastructure-less mode of operation which makes them a suitable candidate for deployment in emergency scenarios like relief operation, battlefield etc., where either the pre-existing infrastructure is totally damaged or it is not possible to establish a new infrastructure quickly. However, MANETs are constrained due to the limited transmission range of the mobile nodes which reduces the total coverage area. Sometimes the infrastructure-less ad hoc network may be combined with a fixed network to form a hybrid network which can cover a wider area with the advantage of having less fixed infrastructure. In such a combined network, for transferring data, we need base stations which act as gateways between the wired and wireless domains. Due to the hybrid nature of these networks, routing is considered a challenging task. Several routing protocols have been proposed and tested under various traffic conditions. However, the simulations of such routing protocols usually do not consider the hybrid network scenario. In this work we have carried out a systematic performance study of the two prominent routing protocols: Destination Sequenced Distance Vector Routing (DSDV) and Dynamic Source Routing (DSR) protocols in the hybrid networking environment. We have analyzed the performance differentials on the basis of three metrics - packet delivery fraction, average end-to-end delay and normalized routing load under varying pause time with different number of sources using NS2 based simulation.



قيم البحث

اقرأ أيضاً

Mobile Adhoc Network is a kind of wireless ad hoc network where nodes are connected wirelessly and the network is self configuring. MANET may work in a standalone manner or may be a part of another network. In this paper we have compared Random Walk Mobility Model and Random Waypoint Mobility Model over two reactive routing protocols Dynamic Source Routing (DSR) and Adhoc On-Demand Distance Vector Routing (AODV) protocol and one Proactive routing protocol Distance Sequenced Distance Vector Routing (DSDV) Our analysis showed that DSR, AODV & DSDV under Random Walk and Random Way Point Mobility models have similar results for similar inputs however as the pause time increases so does the difference in performance rises. They show that their motion, direction, angle of direction, speed is same under both mobility models. We have made their analysis on packet delivery ratio, throughput and routing overhead. We have tested them with different criteria like different number of nodes, speed and different maximum number of connections.
In a vehicular edge computing (VEC) system, vehicles can share their surplus computation resources to provide cloud computing services. The highly dynamic environment of the vehicular network makes it challenging to guarantee the task offloading dela y. To this end, we introduce task replication to the VEC system, where the replicas of a task are offloaded to multiple vehicles at the same time, and the task is completed upon the first response among replicas. First, the impact of the number of task replicas on the offloading delay is characterized, and the optimal number of task replicas is approximated in closed-form. Based on the analytical result, we design a learning-based task replication algorithm (LTRA) with combinatorial multi-armed bandit theory, which works in a distributed manner and can automatically adapt itself to the dynamics of the VEC system. A realistic traffic scenario is used to evaluate the delay performance of the proposed algorithm. Results show that, under our simulation settings, LTRA with an optimized number of task replicas can reduce the average offloading delay by over 30% compared to the benchmark without task replication, and at the same time can improve the task completion ratio from 97% to 99.6%.
176 - M. Aslam , M. B. Rasheed , T. Shah 2013
An energy efficient routing protocol is the major attentiveness for researcher in field of Wireless Sensor Networks (WSNs). In this paper, we present some energy efficient hierarchal routing protocols, prosper from conventional Low Energy Adaptive Cl ustering Hierarchy (LEACH) routing protocol. Fundamental objective of our consideration is to analyze, how these ex- tended routing protocols work in order to optimize lifetime of network nodes and how quality of routing protocols is improved for WSNs. Furthermore, this paper also emphasizes on some issues experienced by LEACH and also explains how these issues are tackled by other enhanced routing protocols from classi- cal LEACH. We analytically compare the features and performance issues of each hierarchal routing protocol. We also simulate selected clustering routing protocols for our study in order to elaborate the enhancement achieved by ameliorate routing protocols.
Multipath BGP (M-BGP) allows a BGP router to install multiple equally-good paths, via parallel inter-domain border links, to a destination prefix. M-BGP differs from the multipath routing techniques in many ways, e.g. M-BGP is only implemented at bor der routers of Autonomous Systems (ASes); and while it shares traffic to different IP addresses in a destination prefix via different border links, any traffic to a given destination IP always follows the same border link. Recently we studied Looking Glass data and reported the wide deployment of M-BGP in the Internet; in particular, Hurricane Electric (AS6939) has implemented over 1,000 cases of M-BGP to hundreds of its peering ASes. In this paper, we analyzed the performance of M-BGP. We used RIPE Atlas to send traceroute probes to a series of destination prefixes through Hurricane Electrics border routers implemented with M-BGP. We examined the distribution of Round Trip Time to each probed IP address in a destination prefix and their variation during the measurement. We observed that the deployment of M-BGP can guarantee stable routing between ASes and enhance a networks resilience to traffic changes. Our work provides insights into the unique characteristics of M-BGP as an effective technique for load balancing.
This paper presents path loss model along with framework for probability distribution function for VANETs. Furthermore, we simulate three routing protocols Destination Sequenced Distance Vector (DSDV), Optimized Link State Routing (OLSR) and Dynamic MANET On-demand (DYMO) in NS-2 to evaluate and compare their performance using two Mac-layer Protocols 802.11 and 802.11p. A novel approach of this work is modifications in existing parameters to achieve high efficiency. After extensive simulations, we observe that DSDV out performs with 802.11p while DYMO gives best performance with 802.11.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا