ﻻ يوجد ملخص باللغة العربية
We analyze the properly normalized three-point correlator of two protected scalar operators and one higher spin twist-two operator in N=4 super Yang-Mills, in the limit of large spin j. The relevant structure constant can be extracted from the OPE of the four-point correlator of protected scalar operators. We show that crossing symmetry of the four point correlator plus a judicious guess for the perturbative structure of the three-point correlator, allow to make a prediction for the structure constant at all loops in perturbation theory, up to terms that remain finite as the spin becomes large. Furthermore, the expression for the structure constant allows to propose an expression for the all loops four-point correlator G(u,v), in the limit u,v -> 0. Our predictions are in perfect agreement with the large j expansion of results available in the literature.
We describe an iterative scheme which allows us to calculate any multi-loop correlator for the complex matrix model to any genus using only the first in the chain of loop equations. The method works for a completely general potential and the results
Vasilievs higher-spin theories in various dimensions are uniformly represented as a simple system of equations. These equations and their gauge invariances are based on two superalgebras and have a transparent algebraic meaning. For a given higher-sp
We give an explicit superspace construction of higher spin conserved supercurrents built out of $4D,mathcal{N}=1$ massless supermultiplets of arbitrary spin. These supercurrents are gauge invariant and generate a large class of cubic interactions bet
We observe that the partition function of the set of all free massless higher spins s=0,1,2,3,... in flat space is equal to one: the ghost determinants cancel against the physical ones or, equivalently, the (regularized) total number of degrees of fr
We propose generalised $mathcal{N}=1$ superconformal higher-spin (SCHS) gauge multiplets of depth $t$, $Upsilon_{alpha(n)dot{alpha}(m)}^{(t)}$, with $ngeq m geq 1$. At the component level, for $t>2$ they contain generalised conformal higher-spin (CHS