ﻻ يوجد ملخص باللغة العربية
We describe an iterative scheme which allows us to calculate any multi-loop correlator for the complex matrix model to any genus using only the first in the chain of loop equations. The method works for a completely general potential and the results contain no explicit reference to the couplings. The genus $g$ contribution to the $m$--loop correlator depends on a finite number of parameters, namely at most $4g-2+m$. We find the generating functional explicitly up to genus three. We show as well that the model is equivalent to an external field problem for the complex matrix model with a logarithmic potential.
We analyze the properly normalized three-point correlator of two protected scalar operators and one higher spin twist-two operator in N=4 super Yang-Mills, in the limit of large spin j. The relevant structure constant can be extracted from the OPE of
The Polyakov relation, which in the sphere topology gives the changes of the Liouville action under the variation of the position of the sources, in the case of higher genus is related also to the dependence of the action on the moduli of the surface
We argue that restricted Schur polynomials provide a useful parameterization of the complete set of gauge invariant variables of multi-matrix models. The two point functions of restricted Schur polynomials are evaluated exactly in the free field theory limit. They have diagonal two point functions.
Higher genus modular graph tensors map Feynman graphs to functions on the Torelli space of genus-$h$ compact Riemann surfaces which transform as tensors under the modular group $Sp(2h , mathbb Z)$, thereby generalizing a construction of Kawazumi. An
We study the correlation functions of Coulomb branch operators of four-dimensional $mathcal{N} = 2$ Superconformal Field Theories (SCFTs). We focus on rank-one theories, such as the SU(2) gauge theory with four fundamental hypermultiplets. Extremal c