ترغب بنشر مسار تعليمي؟ اضغط هنا

Monte Carlo approximation to optimal investment

134   0   0.0 ( 0 )
 نشر من قبل Leonard Rogers
 تاريخ النشر 2013
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper sets up a methodology for approximately solving optimal investment problems using duality methods combined with Monte Carlo simulations. In particular, we show how to tackle high dimensional problems in incomplete markets, where traditional methods fail due to the curse of dimensionality.



قيم البحث

اقرأ أيضاً

We propose a novel algorithm which allows to sample paths from an underlying price process in a local volatility model and to achieve a substantial variance reduction when pricing exotic options. The new algorithm relies on the construction of a disc rete multinomial tree. The crucial feature of our approach is that -- in a similar spirit to the Brownian Bridge -- each random path runs backward from a terminal fixed point to the initial spot price. We characterize the tree in two alternative ways: in terms of the optimal grids originating from the Recursive Marginal Quantization algorithm and following an approach inspired by the finite difference approximation of the diffusions infinitesimal generator. We assess the reliability of the new methodology comparing the performance of both approaches and benchmarking them with competitor Monte Carlo methods.
248 - Hampus Engsner 2021
In this paper we explore ways of numerically computing recursive dynamic monetary risk measures and utility functions. Computationally, this problem suffers from the curse of dimensionality and nested simulations are unfeasible if there are more than two time steps. The approach considered in this paper is to use a Least Squares Monte Carlo (LSM) algorithm to tackle this problem, a method which has been primarily considered for valuing American derivatives, or more general stopping time problems, as these also give rise to backward recursions with corresponding challenges in terms of numerical computation. We give some overarching consistency results for the LSM algorithm in a general setting as well as explore numerically its performance for recursive Cost-of-Capital valuation, a special case of a dynamic monetary utility function.
232 - Benjamin Jourdain 2010
Taking advantage of the recent litterature on exact simulation algorithms (Beskos, Papaspiliopoulos and Roberts) and unbiased estimation of the expectation of certain fonctional integrals (Wagner, Beskos et al. and Fearnhead et al.), we apply an exac t simulation based technique for pricing continuous arithmetic average Asian options in the Black and Scholes framework. Unlike existing Monte Carlo methods, we are no longer prone to the discretization bias resulting from the approximation of continuous time processes through discrete sampling. Numerical results of simulation studies are presented and variance reduction problems are considered.
175 - Linlin Xu , Giray Okten 2014
GPU computing has become popular in computational finance and many financial institutions are moving their CPU based applications to the GPU platform. Since most Monte Carlo algorithms are embarrassingly parallel, they benefit greatly from parallel i mplementations, and consequently Monte Carlo has become a focal point in GPU computing. GPU speed-up examples reported in the literature often involve Monte Carlo algorithms, and there are software tools commercially available that help migrate Monte Carlo financial pricing models to GPU. We present a survey of Monte Carlo and randomized quasi-Monte Carlo methods, and discuss existing (quasi) Monte Carlo sequences in GPU libraries. We discuss specific features of GPU architecture relevant for developing efficient (quasi) Monte Carlo methods. We introduce a recent randomized quasi-Monte Carlo method, and compare it with some of the existing implementations on GPU, when they are used in pricing caplets in the LIBOR market model and mortgage backed securities.
In mathematical finance and other applications of stochastic processes, it is frequently the case that the characteristic function may be known but explicit forms for density functions are not available. The simulation of any distribution is greatly facilitated by a knowledge of the quantile function, by which uniformly distributed samples may be converted to samples of the given distribution. This article analyzes the calculation of a quantile function direct from the characteristic function of a probability distribution, without explicit knowledge of the density. We form a non-linear integro-differential equation that despite its complexity admits an iterative solution for the power series of the quantile about the median. We give some examples including tail models and show how to generate C-code for examples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا