ترغب بنشر مسار تعليمي؟ اضغط هنا

Least Squares Monte Carlo applied to Dynamic Monetary Utility Functions

249   0   0.0 ( 0 )
 نشر من قبل Hampus Engsner
 تاريخ النشر 2021
  مجال البحث مالية
والبحث باللغة English
 تأليف Hampus Engsner




اسأل ChatGPT حول البحث

In this paper we explore ways of numerically computing recursive dynamic monetary risk measures and utility functions. Computationally, this problem suffers from the curse of dimensionality and nested simulations are unfeasible if there are more than two time steps. The approach considered in this paper is to use a Least Squares Monte Carlo (LSM) algorithm to tackle this problem, a method which has been primarily considered for valuing American derivatives, or more general stopping time problems, as these also give rise to backward recursions with corresponding challenges in terms of numerical computation. We give some overarching consistency results for the LSM algorithm in a general setting as well as explore numerically its performance for recursive Cost-of-Capital valuation, a special case of a dynamic monetary utility function.



قيم البحث

اقرأ أيضاً

230 - Benjamin Jourdain 2010
Taking advantage of the recent litterature on exact simulation algorithms (Beskos, Papaspiliopoulos and Roberts) and unbiased estimation of the expectation of certain fonctional integrals (Wagner, Beskos et al. and Fearnhead et al.), we apply an exac t simulation based technique for pricing continuous arithmetic average Asian options in the Black and Scholes framework. Unlike existing Monte Carlo methods, we are no longer prone to the discretization bias resulting from the approximation of continuous time processes through discrete sampling. Numerical results of simulation studies are presented and variance reduction problems are considered.
This paper sets up a methodology for approximately solving optimal investment problems using duality methods combined with Monte Carlo simulations. In particular, we show how to tackle high dimensional problems in incomplete markets, where traditional methods fail due to the curse of dimensionality.
We study existence and uniqueness of continuous-time stochastic Radner equilibria in an incomplete market model among a group of agents whose preference is characterized by cash invariant time-consistent monetary utilities. An assumption of smallness type is shown to be sufficient for existence and uniqueness. In particular, this assumption encapsulates settings with small endowments, small time-horizon, or a large population of weakly heterogeneous agents. Central role in our analysis is played by a fully-coupled nonlinear system of quadratic BSDEs.
We propose a novel algorithm which allows to sample paths from an underlying price process in a local volatility model and to achieve a substantial variance reduction when pricing exotic options. The new algorithm relies on the construction of a disc rete multinomial tree. The crucial feature of our approach is that -- in a similar spirit to the Brownian Bridge -- each random path runs backward from a terminal fixed point to the initial spot price. We characterize the tree in two alternative ways: in terms of the optimal grids originating from the Recursive Marginal Quantization algorithm and following an approach inspired by the finite difference approximation of the diffusions infinitesimal generator. We assess the reliability of the new methodology comparing the performance of both approaches and benchmarking them with competitor Monte Carlo methods.
This article presents differential equations and solution methods for the functions of the form $Q(x) = F^{-1}(G(x))$, where $F$ and $G$ are cumulative distribution functions. Such functions allow the direct recycling of Monte Carlo samples from one distribution into samples from another. The method may be developed analytically for certain special cases, and illuminate the idea that it is a more precise form of the traditional Cornish-Fisher expansion. In this manner the model risk of distributional risk may be assessed free of the Monte Carlo noise associated with resampling. Examples are given of equations for converting normal samples to Student t, and converting exponential to hyperbolic, variance gamma and normal. In the case of the normal distribution, the change of variables employed allows the sampling to take place to good accuracy based on a single rational approximation over a very wide range of the sample space. The avoidance of any branching statement is of use in optimal GPU computations as it avoids the effect of {it warp divergence}, and we give examples of branch-free normal quantiles that offer performance improvements in a GPU environment, while retaining the best precision characteristics of well-known methods. We also offer models based on a low-probability of warp divergence. Comparisons of new and old forms are made on the Nvidia Quadro 4000, GTX 285 and 480, and Tesla C2050 GPUs. We argue that in single-precision mode, the change-of-variables approach offers performance competitive with the fastest existing scheme while substantially improving precision, and that in double-precision mode, this approach offers the most GPU-optimal Gaussian quantile yet, and without compromise on precision for Monte Carlo applications, working twice as fast as the CUDA 4 library function with increased precision.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا