ﻻ يوجد ملخص باللغة العربية
GPU computing has become popular in computational finance and many financial institutions are moving their CPU based applications to the GPU platform. Since most Monte Carlo algorithms are embarrassingly parallel, they benefit greatly from parallel implementations, and consequently Monte Carlo has become a focal point in GPU computing. GPU speed-up examples reported in the literature often involve Monte Carlo algorithms, and there are software tools commercially available that help migrate Monte Carlo financial pricing models to GPU. We present a survey of Monte Carlo and randomized quasi-Monte Carlo methods, and discuss existing (quasi) Monte Carlo sequences in GPU libraries. We discuss specific features of GPU architecture relevant for developing efficient (quasi) Monte Carlo methods. We introduce a recent randomized quasi-Monte Carlo method, and compare it with some of the existing implementations on GPU, when they are used in pricing caplets in the LIBOR market model and mortgage backed securities.
Conditional value at risk (CVaR) is a popular measure for quantifying portfolio risk. Sensitivity analysis of CVaR is very useful in risk management and gradient-based optimization algorithms. In this paper, we study the infinitesimal perturbation an
This article presents differential equations and solution methods for the functions of the form $Q(x) = F^{-1}(G(x))$, where $F$ and $G$ are cumulative distribution functions. Such functions allow the direct recycling of Monte Carlo samples from one
This paper sets up a methodology for approximately solving optimal investment problems using duality methods combined with Monte Carlo simulations. In particular, we show how to tackle high dimensional problems in incomplete markets, where traditional methods fail due to the curse of dimensionality.
In the paper, the pricing of Quanto options is studied, where the underlying foreign asset and the exchange rate are correlated with each other. Firstly, we adopt Bayesian methods to estimate unknown parameters entering the pricing formula of Quanto
We propose a novel algorithm which allows to sample paths from an underlying price process in a local volatility model and to achieve a substantial variance reduction when pricing exotic options. The new algorithm relies on the construction of a disc