ﻻ يوجد ملخص باللغة العربية
The OPERA experiment aims at measuring the u_{mu} -> u_{tau} oscillation through the u_{tau} appearance in an almost pure u_{mu} beam (CNGS). For the direct identification of the short-lived {tau} lepton, produced in u_{tau} CC interactions, a micrometric detection resolution is needed. Therefore the OPERA detector makes use of nuclear emulsion films, the highest spatial resolution tracking device, combined with lead plates in an emulsion cloud chamber (ECC) structure called brick. In this paper the nuclear emulsion analysis chain is reported; the strategy and the algorithms set up will be described together with their performances.
The possibility of a three-dimensional visualisation/reconstruction of tracks in nuclear emulsion films using X-ray imaging is described in this paper. The feasibility of the technique is established with experimental results.
The OPERA experiment, designed to conclusively prove the existence of $rm u_mu to u_tau$ oscillations in the atmospheric sector, makes use of a massive lead-nuclear emulsion target to observe the appearance of $rm u_tau$s in the CNGS $rm u_mu$ be
The SABRE (Sodium Iodide with Active Background REjection) experiment will search for an annually modulating signal from dark matter using an array of ultra-pure NaI(Tl) detectors surrounded by an active scintillator veto to further reduce the backgr
The main task of the Target Tracker detector of the long baseline neutrino oscillation OPERA experiment is to locate in which of the target elementary constituents, the lead/emulsion bricks, the neutrino interactions have occurred and also to give ca
The main goal of the AEgIS experiment at CERN is to test the weak equivalence principle for antimatter. AEgIS will measure the free-fall of an antihydrogen beam traversing a moire deflectometer. The goal is to determine the gravitational acceleration