ﻻ يوجد ملخص باللغة العربية
The main goal of the AEgIS experiment at CERN is to test the weak equivalence principle for antimatter. AEgIS will measure the free-fall of an antihydrogen beam traversing a moire deflectometer. The goal is to determine the gravitational acceleration g for antihydrogen with an initial relative accuracy of 1% by using an emulsion detector combined with a silicon micro-strip detector to measure the time of flight. Nuclear emulsions can measure the annihilation vertex of antihydrogen atoms with a precision of about 1 - 2 microns r.m.s. We present here results for emulsion detectors operated in vacuum using low energy antiprotons from the CERN antiproton decelerator. We compare with Monte Carlo simulations, and discuss the impact on the AEgIS project.
We discuss an experimental approach allowing to prepare antihydrogen atoms for the GBAR experiment. We study the feasibility of all necessary experimental steps: The capture of incoming $bar{rm H}^+$ ions at keV energies in a deep linear RF trap, sym
The OPERA experiment aims at measuring the u_{mu} -> u_{tau} oscillation through the u_{tau} appearance in an almost pure u_{mu} beam (CNGS). For the direct identification of the short-lived {tau} lepton, produced in u_{tau} CC interactions, a m
The ASACUSA CUSP collaboration at the Antiproton Decelerator (AD) of CERN is planning to measure the ground-state hyperfine splitting of antihydrogen using an atomic spectroscopy beamline. We describe here the latest developments on the spectroscopy
We propose an innovative method for proton radiography based on nuclear emulsion film detectors, a technique in which images are obtained by measuring the position and the residual range of protons passing through the patients body. For this purpose,
Large liquid-scintillator-based detectors have proven to be exceptionally effective for low energy neutrino measurements due to their good energy resolution and scalability to large volumes. The addition of directional information using Cherenkov lig