ﻻ يوجد ملخص باللغة العربية
The Visible and Near Infrared (VNIR) is one of the modules of EChO, the Exoplanets Characterization Observatory proposed to ESA for an M-class mission. EChO is aimed to observe planets while transiting by their suns. Then the instrument had to be designed to assure a high efficiency over the whole spectral range. In fact, it has to be able to observe stars with an apparent magnitude Mv= 9-12 and to see contrasts of the order of 10-4 - 10-5 necessary to reveal the characteristics of the atmospheres of the exoplanets under investigation. VNIR is a spectrometer in a cross-dispersed configuration, covering the 0.4-2.5 micron spectral range with a resolving power of about 330 and a field of view of 2 arcsec. It is functionally split into two channels respectively working in the 0.4-1 and 1.0-2.5 micron spectral ranges. Such a solution is imposed by the fact the light at short wavelengths has to be shared with the EChO Fine Guiding System (FGS) devoted to the pointing of the stars under observation. The spectrometer makes use of a HgCdTe detector of 512 by 512 pixels, 18 micron pitch and working at a temperature of 45K as the entire VNIR optical bench. The instrument has been interfaced to the telescope optics by two optical fibers, one per channel, to assure an easier coupling and an easier colocation of the instrument inside the EChO optical bench.
Transit-spectroscopy of exoplanets is one of the key observational techniques to characterize the extrasolar planet and its atmosphere. The observational challenges of these measurements require dedicated instrumentation and only the space environmen
The High Angular Resolution Monolithic Optical and Near-infrared Integral field spectrograph (HARMONI) is the visible and near-infrared (NIR), adaptive-optics-assisted, integral field spectrograph for ESOs Extremely Large Telescope (ELT). It will hav
Wavefront sensing and control are important for enabling one of the key advantages of using large apertures, namely higher angular resolutions. Pyramid wavefront sensors are becoming commonplace in new instrument designs owing to their superior sensi
A new all-sky visible and Near-InfraRed (NIR) space astrometry mission with a wavelength cutoff in the K-band is not just focused on a single or small number of key science cases. Instead, it is extremely broad, answering key science questions in nea
We are building a next-generation laser adaptive optics system, Robo-AO-2, for the UH 2.2-m telescope that will deliver robotic, diffraction-limited observations at visible and near-infrared wavelengths in unprecedented numbers. The superior Maunakea