ﻻ يوجد ملخص باللغة العربية
We report on muon spin rotation (muSR) studies of the superconducting and magnetic properties of the ternary intermetallic stannide Ca3Ir4Sn13. This material has recently been the focus of intense research activity due to a proposed interplay of ferromagnetic spin fluctuations and superconductivity. In the temperature range T=1.6-200 K, we find that the zero-field muon relaxation rate is very low and does not provide evidence for spin fluctuations on the muSR time scale. The field-induced magnetization cannot be attributed to localized magnetic moments. In particular, our muSR data reveal that the anomaly observed in thermal and transport properties at T*~38 K is not of magnetic origin. Results for the transverse-field muon relaxation rate at T=0.02-12 K, suggest that superconductivity emerges out of a normal state that is not of a Fermi-liquid type. This is unusual for an electronic system lacking partially filled f-electron shells. The superconducting state is dominated by a nodeless order parameter with a London penetration depth of lambda=385(1) nm and the electron-phonon pairing interaction is in the strong-coupling limit.
We compute the two-particle quantities relevant for superconducting correlations in the two-dimensional Hubbard model within the dynamical cluster approximation. In the normal state we identify the parameter regime in density, interaction, and second
The normal state and superconducting properties are investigated in the phase diagram of K_xSr_{1-x}Fe_2As_2 for 0<x<1. The ground state upper critical field, H_{c2}(0), is extrapolated from magnetic field dependent resistivity measurements. H_{c2}(0
We report on broad-band infrared ellipsometry measurements of the c-axis conductivity of underdoped RBa_{2}Cu_{3}O_{7-d} (R=Y, Nd, and La) single crystals. Our data provide a detailed account of the spectral weight (SW) redistributions due to the nor
Recently it was discovered that the jump in the specific heat at the superconducting transition in pnictide superconductors is proportional to the superconducting transition temperature to the third power, with the superconducting transition temperat
We present a detailed study of 75As NMR Knight shift and spin-lattice relaxation rate in the normal state of stoichiometric polycrystalline LiFeAs. Our analysis of the Korringa relation suggests that LiFeAs exhibits strong antiferromagnetic fluctuati