ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectroscopic distinction between the normal state pseudogap and the superconducting gap of cuprate high T_{c} superconductors

159   0   0.0 ( 0 )
 نشر من قبل Christian Bernhard
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on broad-band infrared ellipsometry measurements of the c-axis conductivity of underdoped RBa_{2}Cu_{3}O_{7-d} (R=Y, Nd, and La) single crystals. Our data provide a detailed account of the spectral weight (SW) redistributions due to the normal state pseudogap (PG) and the superconducting (SC) gap. They show that these phenomena involve different energy scales, exhibit distinct doping dependencies and thus are likely of different origin. In particular, the SW redistribution in the PG state closely resembles the one of a conventional charge- or spin density wave (CDW or SDW) system.



قيم البحث

اقرأ أيضاً

An understanding of the missing antinodal electronic excitations in the pseudogap state is essential for uncovering the physics of the underdoped cuprate high temperature superconductors. The majority of high temperature experiments performed thus fa r, however, have been unable to discern whether the antinodal states are rendered unobservable due to their damping, or whether they vanish due to their gapping. Here we distinguish between these two scenarios by using quantum oscillations to examine whether the small Fermi surface pocket, found to occupy only 2% of the Brillouin zone in the underdoped cuprates, exists in isolation against a majority of completely gapped density of states spanning the antinodes, or whether it is thermodynamically coupled to a background of ungapped antinodal states. We find that quantum oscillations associated with the small Fermi surface pocket exhibit a signature sawtooth waveform characteristic of an isolated two-dimensional Fermi surface pocket. This finding reveals that the antinodal states are destroyed by a hard gap that extends over the majority of the Brillouin zone, placing strong constraints on a drastic underlying origin of quasiparticle disappearance over almost the entire Brillouin zone in the pseudogap regime.
One of the key motivations for the development of atomically resolved spectroscopic imaging STM (SI-STM) has been to probe the electronic structure of cuprate high temperature superconductors. In both the d-wave superconducting (dSC) and the pseudoga p (PG) phases of underdoped cuprates, two distinct classes of electronic states are observed using SI-STM. The first class consists of the dispersive Bogoliubov quasiparticles of a homogeneous d-wave superconductor. These are detected below a lower energy scale |E|={Delta}0 and only upon a momentum space (k-space) arc which terminates near the lines connecting k=pm({pi}/a0,0) to k=pm(0, {pi}/a0). In both the dSC and PG phases, the only broken symmetries detected in the |E|leq {Delta}0 states are those of a d-wave superconductor. The second class of states occurs at energies near the pseudogap energy scale |E| {Delta}1 which is associated conventionally with the antinodal states near k=pm({pi}/a0,0) and k=pm(0, {pi}/a0). We find that these states break the 90o-rotational (C4) symmetry of electronic structure within CuO2 unit cells, at least down to 180o rotational (C2) symmetry (nematic) but in a spatially disordered fashion. This intra-unit-cell C4 symmetry breaking coexists at |E| {Delta}1 with incommensurate conductance modulations locally breaking both rotational and translational symmetries (smectic). The properties of these two classes of |E| {Delta}1 states are indistinguishable in the dSC and PG phases. To explain this segregation of k-space into the two regimes distinguished by the symmetries of their electronic states and their energy scales |E| {Delta}1 and |E|leq{Delta}0, and to understand how this impacts the electronic phase diagram and the mechanism of high-Tc superconductivity, represents one of a key challenges for cuprate studies.
We have studied the influence of disorder induced by electron irradiation on the Nernst effect in optimally and underdoped YBa2Cu3O(7-d) single crystals. The fluctuation regime above T_{c} expands significantly with disorder, indicating that the T_{c } decrease is partly due to the induced loss of phase coherence. In pure crystals the temperature extension of the Nernst signal is found to be narrow whatever the hole doping, contrary to data reported in the low-T_{c} cuprates families. Our results show that the presence of intrinsic disorder can explain the enhanced range of Nernst signal found in the pseudogap phase of the latter compounds.
Signatures of strong coupling effects in cuprate high-$T_{c}$ superconductors have been authenticated through a variety of spectroscopic probes. However, the microscopic nature of relevant excitations has not been agreed upon. Here we report on magne to-optical studies of the CuO$_{2}$ plane carrier dynamics in a prototypical high-$T_{c}$ superconductor YBa$%_{2} $Cu$_{3}$O$_{y}$ (YBCO). Infrared data are directly compared with earlier inelastic neutron scattering results by Dai textit{et al}. [Nature (London) textbf{406}, 965 (2000)] revealing a characteristic depression of the magnetic resonance in H $parallel $ textit{c} field less than 7 T. This analysis has allowed us to critically assess the role of magnetic degrees of freedom in producing strong coupling effects for YBCO system.
We derive analytic expressions for the critical temperatures of the superconducting (SC) and pseudogap (PG) transitions of the high-Tc cuprates as a function of doping. These are in excellent agreement with the experimental data both for single-layer ed materials such as LSCO, Bi2201 and Hg1201 and multi-layered ones, such as Bi2212, Bi2223, Hg1212 and Hg1223. Optimal doping occurs when the chemical potential vanishes, thus leading to an universal expression for the optimal SC transition temperatures. This allows for the obtainment of a quantitative description of the growth of such temperatures with the number of layers, N, which accurately applies to the $Bi$, $Hg$ and $Tl$ families of cuprates. We study the pressure dependence of the SC transition temperatures, obtaining excellent agreement with the experimental data for different materials and dopings. These results are obtained from an effective Hamiltonian for the itinerant oxygen holes, which includes both the electric repulsion between them and their magnetic interactions with the localized copper ions. We show that the former interaction is responsible for the SC and the latter, for the PG phases, the phase diagram of cuprates resulting from the competition of both. The Hamiltonian is defined on a bipartite oxygen lattice, which results from the fact that only the $p_x$ and $p_y$ oxygen orbitals alternatively hybridize with the $3d$ copper orbitals. From this, we can provide an unified explanation for the $d_{x^2-y^2}$ symmetry of both the SC and PG order parameters and obtain the Fermi pockets observed in ARPES experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا