ترغب بنشر مسار تعليمي؟ اضغط هنا

The superconductor KxSr(1-x)Fe2As2: Normal state and superconducting properties

191   0   0.0 ( 0 )
 نشر من قبل Bernd Lorenz
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The normal state and superconducting properties are investigated in the phase diagram of K_xSr_{1-x}Fe_2As_2 for 0<x<1. The ground state upper critical field, H_{c2}(0), is extrapolated from magnetic field dependent resistivity measurements. H_{c2}(0) scales with the critical temperature, T_c, of the superconducting transition. In the normal state the Seebeck coefficient is shown to experience a dramatic change near a critical substitution of x=0.3. This is associated with the formation of a spin density wave state above the superconducting transition temperature. The results provide strong evidence for the reconstruction of the Fermi surface with the onset of magnetic order.



قيم البحث

اقرأ أيضاً

115 - W. Lu , J. Yang , X.L. Dong 2008
Diamagnetic susceptibility measurements under high hydrostatic pressure (up to 1.03 GPa) were carried out on the newly discovered Fe-based superconductor LaO_{1-x}F_{x}FeAs(x=0.11). The transition temperature T_c, defined as the point at the maximum slope of superconducting transition, was enhanced almost linearly by hydrostatic pressure, yielding a dT_c/dP of about 1.2 K/GPa. Differential diamagnetic susceptibility curves indicate that the underlying superconducting state is complicated. It is suggested that pressure plays an important role on pushing low T_c superconducting phase toward the main (optimal) superconducting phase.
High resolution angle-resolved photoemission measurements have been carried out to study the superconducting gap in the (Ba0.6K0.4)Fe2As2 superconductor with Tc=35 K. Two hole-like Fermi surface sheets around the G(0,0) point exhibit different superc onducting gaps. The inner Fermi surface sheet shows larger (10-12 meV) and slightly momentum-dependent gap while the outer one has smaller (7-8 meV) and nearly isotropic gap. The lack of gap node in both Fermi surface sheets favours s-wave superconducting gap symmetry. Superconducting gap opening is also observed at the M(pi,pi) point. The two Fermi surface spots near the M point are gapped below Tc but the gap persists above Tc. The rich and detailed superconducting gap information will provide key insights and constraints in understanding pairing mechanism in the iron-based superconductors.
137 - C. Liu , G. D. Samolyuk , Y. Lee 2008
We use angle-resolved photoemission spectroscopy (ARPES) to investigate the electronic properties of the newly discovered iron-arsenic superconductor, Ba(1-x)K(x)Fe2As2 and non-supercondcuting BaFe2As2. Our study indicates that the Fermi surface of t he undoped, parent compound BaFe$_2$As$_2$ consists of hole pocket(s) at Gamma (0,0) and larger electron pocket(s) at X (1,0), in general agreement with full-potential linearized plane wave (FLAPW) calculations. Upon doping with potassium, the hole pocket expands and the electron pocket becomes smaller with its bottom approaching the chemical potential. Such an evolution of the Fermi surface is consistent with hole doping within a rigid band shift model. Our results also indicate that FLAPW calculation is a reasonable approach for modeling the electronic properties of both undoped and K-doped iron arsenites.
We report on muon spin rotation (muSR) studies of the superconducting and magnetic properties of the ternary intermetallic stannide Ca3Ir4Sn13. This material has recently been the focus of intense research activity due to a proposed interplay of ferr omagnetic spin fluctuations and superconductivity. In the temperature range T=1.6-200 K, we find that the zero-field muon relaxation rate is very low and does not provide evidence for spin fluctuations on the muSR time scale. The field-induced magnetization cannot be attributed to localized magnetic moments. In particular, our muSR data reveal that the anomaly observed in thermal and transport properties at T*~38 K is not of magnetic origin. Results for the transverse-field muon relaxation rate at T=0.02-12 K, suggest that superconductivity emerges out of a normal state that is not of a Fermi-liquid type. This is unusual for an electronic system lacking partially filled f-electron shells. The superconducting state is dominated by a nodeless order parameter with a London penetration depth of lambda=385(1) nm and the electron-phonon pairing interaction is in the strong-coupling limit.
We present the first infrared and optical study in the normal state of ab-plane oriented single crystals of the iron-oxypnictide superconductor LaFePO. We find that this material is a low carrier density metal with a moderate level of correlations an d exhibits signatures of electron-boson coupling. The data is consistent with the presence of coherent quasiparticles in LaFePO.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا