ﻻ يوجد ملخص باللغة العربية
We investigate the interaction between a single atom and optical pulses in a coherent state with a controlled temporal envelope. In a comparison between a rising exponential and a square envelope, we show that the rising exponential envelope leads to a higher excitation probability for fixed low average photon numbers, in accordance to a time-reversed Weisskopf-Wigner model. We characterize the atomic transition dynamics for a wide range of the average photon numbers, and are able to saturate the optical transition of a single atom with ~50 photons in a pulse by a strong focusing technique. For photon numbers of ~1000 in a 15ns long pulse, we clearly observe Rabi oscillations.
We report on a simple method to prepare optical pulses with exponentially rising envelope on the time scale of a few ns. The scheme is based on the exponential transfer function of a fast transistor, which generates an exponentially rising envelope t
In analogy to transistors in classical electronic circuits, a quantum optical switch is an important element of quantum circuits and quantum networks. Operated at the fundamental limit where a single quantum of light or matter controls another field
We investigate experimentally the effect of quantum resonance in the rotational excitation of the simplest quantum rotor - a diatomic molecule. By using the techniques of high-resolution femtosecond pulse shaping and rotational state-resolved detecti
Precision sensing, and in particular high precision magnetometry, is a central goal of research into quantum technologies. For magnetometers, often trade-offs exist between sensitivity, spatial resolution, and frequency range. The precision, and thus
Quantum effects, prevalent in the microscopic scale, generally elusive in macroscopic systems due to dissipation and decoherence. Quantum phenomena in large systems emerge only when particles are strongly correlated as in superconductors and superflu