ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrasensitive Magnetometer Using a Single Atom

113   0   0.0 ( 0 )
 نشر من قبل Christof Wunderlich
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Precision sensing, and in particular high precision magnetometry, is a central goal of research into quantum technologies. For magnetometers, often trade-offs exist between sensitivity, spatial resolution, and frequency range. The precision, and thus the sensitivity of magnetometry, scales as $1/sqrt {T_2}$ with the phase coherence time, $T_2$, of the sensing system playing the role of a key determinant. Adapting a dynamical decoupling scheme that allows for extending $T_2$ by orders of magnitude and merging it with a magnetic sensing protocol, we achieve a measurement sensitivity even for high frequency fields close to the standard quantum limit. Using a single atomic ion as a sensor, we experimentally attain a sensitivity of $4.6$ pT $/sqrt{Hz}$ for an alternating-current magnetic field near 14 MHz. Based on the principle demonstrated here, this unprecedented sensitivity combined with spatial resolution in the nanometer range and tunability from direct-current to the gigahertz range could be used for magnetic imaging in as of yet inaccessible parameter regimes.



قيم البحث

اقرأ أيضاً

Quantum effects, prevalent in the microscopic scale, generally elusive in macroscopic systems due to dissipation and decoherence. Quantum phenomena in large systems emerge only when particles are strongly correlated as in superconductors and superflu ids. Cooperative interaction of correlated atoms with electromagnetic fields leads to superradiance, the enhanced quantum radiation phenomenon, exhibiting novel physics such as quantum Dicke phase and ultranarrow linewidth for optical clocks. Recent researches to imprint atomic correlation directly demonstrated controllable collective atom-field interactions. Here, we report cavity-mediated coherent single-atom superradiance. Single atoms with predefined correlation traverse a high-Q cavity one by one, emitting photons cooperatively with the atoms already gone through the cavity. Such collective behavior of time-separated atoms is mediated by the long-lived cavity field. As a result, a coherent field is generated in the steady state, whose intensity varies as the square of the number of traversing atoms during the cavity decay time, exhibiting more than ten-fold enhancement from noncollective cases. The correlation among single atoms is prepared with the aligned atomic phase achieved by nanometer-precision position control of atoms with a nanohole-array aperture. The present work deepens our understanding of the collective matter-light interaction and provides an advanced platform for phase-controlled atom-field interactions.
In analogy to transistors in classical electronic circuits, a quantum optical switch is an important element of quantum circuits and quantum networks. Operated at the fundamental limit where a single quantum of light or matter controls another field or material system, it may enable fascinating applications such as long-distance quantum communication, distributed quantum information processing and metrology, and the exploration of novel quantum states of matter. Here, by strongly coupling a photon to a single atom trapped in the near field of a nanoscale photonic crystal cavity, we realize a system where a single atom switches the phase of a photon, and a single photon modifies the atoms phase. We experimentally demonstrate an atom-induced optical phase shift that is nonlinear at the two-photon level, a photon number router that separates individual photons and photon pairs into different output modes, and a single-photon switch where a single gate photon controls the propagation of a subsequent probe field. These techniques pave the way towards integrated quantum nanophotonic networks involving multiple atomic nodes connected by guided light.
Single atoms form a model system for understanding the limits of single photon detection. Here, we develop a non-Markov theory of single-photon absorption by a two-level atom to place limits on the absorption (transduction) time. We show the existenc e of a finite rise time in the probability of excitation of the atom during the absorption event which is infinitely fast in previous Markov theories. This rise time is governed by the bandwidth of the atom-field interaction spectrum and leads to a fundamental jitter in time-stamping the absorption event. Our theoretical framework captures both the weak and strong atom-field coupling regimes and sheds light on the spectral matching between the interaction bandwidth and single photon Fock state pulse spectrum. Our work opens questions whether such jitter in the absorption event can be observed in a multi-mode realistic single photon detector. Finally, we also shed light on the fundamental differences between linear and nonlinear detector outputs for single photon Fock state vs. coherent state pulses.
We investigate the temporal dynamics of Doppler cooling of an initially hot single trapped atom in the weak binding regime using a semiclassical approach. We develop an analytical model for the simplest case of a single vibrational mode for a harmoni c trap, and show how this model allows us to estimate the initial energy of the trapped particle by observing the fluorescence rate during the cooling process. The experimental implementation of this temperature measurement provides a way to measure atom heating rates by observing the temperature rise in the absence of cooling. This method is technically relatively simple compared to conventional sideband detection methods, and the two methods are in reasonable agreement. We also discuss the effects of RF micromotion, relevant for a trapped atomic ion, and the effect of coupling between the vibrational modes on the cooling dynamics.
We discuss the scattering of a light pulse by a single atom in free space using a purely semi-classical framework. The atom is treated as a linear elastic scatterer allowing to treat each spectral component of the incident pulse separately. For an in creasing exponential pulse with a dipole radiation pattern incident from full solid angle the spectrum resulting from interference of incident and scattered components is a decreasing exponential pulse.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا