ﻻ يوجد ملخص باللغة العربية
Quantum effects, prevalent in the microscopic scale, generally elusive in macroscopic systems due to dissipation and decoherence. Quantum phenomena in large systems emerge only when particles are strongly correlated as in superconductors and superfluids. Cooperative interaction of correlated atoms with electromagnetic fields leads to superradiance, the enhanced quantum radiation phenomenon, exhibiting novel physics such as quantum Dicke phase and ultranarrow linewidth for optical clocks. Recent researches to imprint atomic correlation directly demonstrated controllable collective atom-field interactions. Here, we report cavity-mediated coherent single-atom superradiance. Single atoms with predefined correlation traverse a high-Q cavity one by one, emitting photons cooperatively with the atoms already gone through the cavity. Such collective behavior of time-separated atoms is mediated by the long-lived cavity field. As a result, a coherent field is generated in the steady state, whose intensity varies as the square of the number of traversing atoms during the cavity decay time, exhibiting more than ten-fold enhancement from noncollective cases. The correlation among single atoms is prepared with the aligned atomic phase achieved by nanometer-precision position control of atoms with a nanohole-array aperture. The present work deepens our understanding of the collective matter-light interaction and provides an advanced platform for phase-controlled atom-field interactions.
Single atoms form a model system for understanding the limits of single photon detection. Here, we develop a non-Markov theory of single-photon absorption by a two-level atom to place limits on the absorption (transduction) time. We show the existenc
We discuss the scattering of a light pulse by a single atom in free space using a purely semi-classical framework. The atom is treated as a linear elastic scatterer allowing to treat each spectral component of the incident pulse separately. For an in
We report on the observation of single-photon superradiance from an exciton in a semiconductor quantum dot. The confinement by the quantum dot is strong enough for it to mimic a two-level atom, yet sufficiently weak to ensure superradiance. The elect
Tailoring the interactions between quantum emitters and single photons constitutes one of the cornerstones of quantum optics. Coupling a quantum emitter to the band edge of a photonic crystal waveguide (PCW) provides a unique platform for tuning thes
Precision sensing, and in particular high precision magnetometry, is a central goal of research into quantum technologies. For magnetometers, often trade-offs exist between sensitivity, spatial resolution, and frequency range. The precision, and thus