ﻻ يوجد ملخص باللغة العربية
In this letter we report single-hole tunneling through a quantum dot in a two-dimensional hole gas, situated in a narrow-channel field-effect transistor in intrinsic silicon. Two layers of aluminum gate electrodes are defined on Si/SiO$_2$ using electron-beam lithography. Fabrication and subsequent electrical characterization of different devices yield reproducible results, such as typical MOSFET turn-on and pinch-off characteristics. Additionally, linear transport measurements at 4 K result in regularly spaced Coulomb oscillations, corresponding to single-hole tunneling through individual Coulomb islands. These Coulomb peaks are visible over a broad range in gate voltage, indicating very stable device operation. Energy spectroscopy measurements show closed Coulomb diamonds with single-hole charging energies of 5--10 meV, and lines of increased conductance as a result of resonant tunneling through additional available hole states.
We investigate spin dynamics of resident holes in a p-modulation-doped GaAs/Al$_{0.3}$Ga$_{0.7}$As single quantum well. Time-resolved Faraday and Kerr rotation, as well as resonant spin amplification, are utilized in our study. We observe that nonres
Quantum dots fabricated using techniques and materials that are compatible with semiconductor manufacturing are promising for quantum information processing. While great progress has been made toward high-fidelity control of quantum dots positioned i
We investigate the current-induced spin polarization in the two-dimensional hole gas (2DHG) with the structure inversion asymmetry. By using the perturbation theory, we re-derive the effective $k$-cubic Rashba Hamiltonian for 2DHG and the generalized
On a high mobility two-dimensional hole gas (2DHG) in a GaAs/GaAlAs heterostructure we study the interaction correction to the Drude conductivity in the ballistic regime, $k_BTtau /hbar $ $>1$. It is shown that the metallic behaviour of the resistivi
The lifting of the two-fold degeneracy of the conduction valleys in a strained silicon quantum well is critical for spin quantum computing. Here, we obtain an accurate measurement of the splitting of the valley states in the low-field region of inter