ﻻ يوجد ملخص باللغة العربية
We investigate the current-induced spin polarization in the two-dimensional hole gas (2DHG) with the structure inversion asymmetry. By using the perturbation theory, we re-derive the effective $k$-cubic Rashba Hamiltonian for 2DHG and the generalized spin operators accordingly. Then based on the linear response theory we calculate the current-induced spin polarization both analytically and numerically with the disorder effect considered. We have found that, quite different from the two-dimensional electron gas, the spin polarization in 2DHG depends linearly on Fermi energy in the low doping regime, and with increasing Fermi energy, the spin polarization may be suppressed and even changes its sign. We predict a pronounced peak of the spin polarization in 2DHG once the Fermi level is somewhere between minimum points of two spin-split branches of the lowest light-hole subband. We discuss the possibility of measurements in experiments as regards the temperature and the width of quantum wells.
Current-induced spin polarization (CISP) is rederived in ballistic spin-orbit-coupled electron systems, based on equilibrium statistical mechanics. A simple and useful picture is correspondingly proposed to help understand the CISP and predict the po
Converse effect of spin photocurrent and current induced spin polarization are experimentally demonstrated in the same two-dimensional electron gas system with Rashba spin splitting. Their consistency with the strength of the Rashba coupling as measu
We investigate spin dynamics of resident holes in a p-modulation-doped GaAs/Al$_{0.3}$Ga$_{0.7}$As single quantum well. Time-resolved Faraday and Kerr rotation, as well as resonant spin amplification, are utilized in our study. We observe that nonres
We put forward a mechanism for current induced spin polarization for a hole in a quantum dot side-coupled to a quantum wire, that is based on the spin-orbit splitting of the valence band. We predict that in a stark contrast with the traditional mecha
Density-functional calculations using an exact exchange potential for a two-dimensional electron gas (2DEG) formed in a GaAs single quantum well predict the existence of a spin-polarized phase, when an excited subband becomes slightly populated. Dire