ﻻ يوجد ملخص باللغة العربية
The conformal gravity fit to observed galactic rotation curves requires {gamma}>0. On the other hand, conventional method for light deflection by galaxies gives a negative contribution to Schwarzschild value for {gamma}>0, which is contrary to observation. Thus, it is very important that the contribution to bending should in principle be positive, no matter how small its magnitude is. Here we show that the Rindler-Ishak method gives a positive contribution to Schwarzschild deflection for {gamma}>0, as desired. We also obtain the exact local coupling term derived earlier by Sereno. These results indicate that conformal gravity can potentially test well against all astrophysical observations to date.
We study here, using the Mannheim-Kazanas solution of Weyl conformal theory, the mass decomposition in the representative subsample of $57$ early-type elliptical lens galaxies of the SLACS on board the HST. We begin by showing that the solution need
With the assumptions of a quartic scalar field, finite energy of the scalar field in a volume, and vanishing radial component of 4-current at infinity, an exact static and spherically symmetric hairy black hole solution exists in the framework of Hor
We show how Conformal Gravity (CG) has to satisfy a fine-tuning condition to describe the rotation curves of disk galaxies without the aid of dark matter. Interpreting CG as a gauge natural theory yields conservation laws and their associated superpo
We consider the gravitational radiation in conformal gravity theory. We perturb the metric from flat Mikowski space and obtain the wave equation after introducing the appropriate transformation for perturbation. We derive the effective energy-momentu
In this paper we continue a study of cosmological perturbations in the conformal gravity theory. In previous work we had obtained a restricted set of solutions to the cosmological fluctuation equations, solutions that were required to be both transve