ﻻ يوجد ملخص باللغة العربية
3D Rashba materials can be a leading player in spin-related novel phenomena, ranging from the metallic extreme (unconventional superconductivity) to the transport intermediate (spin Hall effects) to the novel insulating variant (3D topological insulating states). As the essential backbone for both fundamental and applied research of such a 3D Rashba material, this study established the growth of sizeable single crystals of a candidate compound BiTeI with adjusted carrier concentrations. Three techniques (standard vertical Bridgman, modified horizontal Bridgman, and vapour transport) were employed, and BiTeI crystals (> 1 * 1 * 0.2 mm3) with fundamentally different electronic states from metallic to insulating were successfully grown by the chosen techniques. The 3D Rashba electronic states, including the Fermi surface topology, for the corresponding carrier concentrations of the obtained BiTeI crystals were revealed by relativistic first-principles calculations.
We observe a giant spin-orbit splitting in bulk and surface states of the non-centrosymmetric semiconductor BiTeI. We show that the Fermi level can be placed in the valence or in the conduction band by controlling the surface termination. In both cas
The design and synthesis of targeted functional materials have been a long-term goal for material scientists. Although a universal design strategy is difficult to generate for all types of materials, however, it is still helpful for a typical family
Polycrystalline Ba4NbIr3O12 has recently been shown to be a promising spin liquid candidate. We report an easy and reliable method to grow millimeter-sized single crystals of this trimer based spin liquid candidate material with the actual stoichiome
The non-centrosymmetric semiconductor BiTeI exhibits two distinct surface terminations that support spin-split Rashba surface states. Their ambipolarity can be exploited for creating spin-polarized $p$-$n$ junctions at the boundaries between domains
We report the observation of Shubnikov-de Haas (SdH) oscillations in single crystals of the Rashba spin-splitting compound BiTeI, from both longitudinal ($R_{xx}(B)$) and Hall ($R_{xy}(B)$) magnetoresistance. Under magnetic field up to 65 T, we resol