ﻻ يوجد ملخص باللغة العربية
Polycrystalline Ba4NbIr3O12 has recently been shown to be a promising spin liquid candidate. We report an easy and reliable method to grow millimeter-sized single crystals of this trimer based spin liquid candidate material with the actual stoichiometry of Ba4Nb0.8Ir3.2O12. The growth of large crystals is achieved using BaCl2 as flux. The crystals show hexagonal plate-like habit with edges up to 3 mm in length. The structure is confirmed by single crystal X-ray diffraction and is found to be the same as of previously reported phase Ba12Nb2.4Ir9.6O36 [Ba4Nb0.8Ir3.2O12], indeed with a mixed occupancy of Nb/Ir at 3a site. The magnetic and calorimetric study on the individual single crystals confirms the possibility of a spin liquid state consistent with a recent report on a polycrystalline sample
CuAl2O4 is a normal spinel oxide having quantum spin, S=1/2 for Cu2+. It is a rather unique feature that the Cu2+ ions of CuAl2O4 sit at a tetrahedral position, not like the usual octahedral position for many oxides. At low temperatures, it exhibits
We study spin liquid in the frustrated diamond lattice antiferromagnet CoAl2O4 by means of single crystal neutron scattering in zero and applied magnetic field. The magnetically ordered phase appearing below TN=8 K remains nonconventional down to 1.5
Two- and three-dimensional Kitaev magnets are prototypical frustrated quantum spin systems, in which the original spin degrees of freedom fractionalize into Majorana fermions and a $mathbb{Z}_2$ gauge field -- a purely local phenomenon that reveals i
Here we report successful single crystal growth of new possible magnetic topological insulator (MTI) FeBi2Te4 by self-flux method via vacuum encapsulation process. The detailed Rietveld analysis of Powder XRD data shows the as grown MTI crystal to be
3D Rashba materials can be a leading player in spin-related novel phenomena, ranging from the metallic extreme (unconventional superconductivity) to the transport intermediate (spin Hall effects) to the novel insulating variant (3D topological insula